首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were transported to five forest sites at increasing distances from a pulp mill emitting mainly SO(2). Levels of compounds which may have nutritional or defensive value for aphids on pine and spruce seedlings were studied. Glucose and fructose concentrations were significantly increased in pine and spruce needles near the pulp mill. There were no changes in sucrose and starch concentrations. In pine shoots, total free amino acid concentration and the concentrations of ornithine, lysine, histidine and arginine were significantly negatively correlated with the distance from the pulp mill, while in spruce only the individual amino acids glycine, ornithine, lysine and histidine showed a significant negative correlation with distance. There were no changes in total phenolic, catechin, total monoterpene and total resin acid concentrations. However, in pine seedlings monoterpenes beta-pinene and sabinene and in spruce seedlings resin acid palustric acid were significantly correlated with the distance from the pulp mill. The results indicate that SO(2) disturbs carbohydrate metabolism in spruce and pine seedlings. The elevated concentrations of arginine may be the result of the combinations of SO(2), NO(3) and NH(3) emissions of the pulp mill. The emissions did not have any impact on total amounts of defensive substances in trees. Thus, the possible susceptibility of conifers to herbivores appears to be due to changes in nutritive value rather than to reduced chemical resistance.  相似文献   

2.
Seedlings of Norway maple (Acer platanoides), silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) were grown in selected sodium chloride (NaCl) concentrations, soil types and under different watering regimes. Plants were raised from seeds, except for Scots pine plants which were obtained from a commercial source. Among the plant species tested, Scots pine was the most tolerant to soil salinity, while Norway spruce was the most susceptible. For both Norway maple and Norway spruce some half-sib families were more tolerant than others. No significant correlation was found between the tolerance of different half-sib families and the tolerance of mother trees observed in the field. The extent of leaf necrosis correlated significantly with the leaf concentrations of sodium (Na) and chloride (Cl). Among half-sib families within the species no such correlation was found. On the other hand, the least injured progeny of Norway maples had the highest concentrations of NaCl. The extent of salt-induced leaf necrosis varied with soil type, and a significant interaction between species and soil type was observed. Seedlings of Norway spruce grown in sand showed more severe necrosis and significantly higher concentrations of Na and Cl than seedlings grown in loam, silt loam, and peat. The severity of salt-induced leaf injury varied with the watering regime. Silver birch was the most affected species by drought and autumn watering treatments. Plants of silver birch subjected to drought showed increased leaf necrosis compared to the non-treated plants, and autumn watering treatment reduced the severity of leaf necrosis.  相似文献   

3.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

4.
Current-year seedlings of beech, ash, Norway spruce and Scots pine were exposed during one growing season to different, but moderate, ozone (O(3)) scenarios representative for Switzerland (50, 85, 100% ambient, 50% ambient+30 nl l(-1)) in open-top chambers (OTCs) and to ambient O(3) concentrations in the field. Biomass significantly decreased with increasing O(3) dose in all species except for spruce. Losses of 25.5% (ash), 17.4% (beech), 9.9% (Scots pine) were found per 10 microl l(-1) h accumulated O(3) exposure over a threshold concentration of 40 nl l(-1) during daylight hours (AOT40). Ratios of root/shoot biomass (RSR) also significantly decreased with increasing AOT40 levels in beech and ash, but not in Norway spruce and Scots pine. The data show that the deciduous species beech and ash were more susceptible to O(3) with respect to RSR and biomass than the coniferous species Norway spruce and Scots pine.  相似文献   

5.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

6.
The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.  相似文献   

7.
Studies were done on the effects of elevated soil concentrations of copper (Cu) and (Ni) on foliar carbohydrates and phenolics in Scots pine (Pinus sylvestris L.). Four year-old seedlings were planted in pots filled with metal-treated mineral forest soil in early June. The experimental design included all combinations of four levels of Cu (0, 25, 40 and 50 mg kg(-1) soil dw) and Ni (0, 5, 15 and 25 mg kg(-1) soil dw). Current year needles were sampled for soluble sugar, starch and phenolics at the end of September. Ni increased sucrose concentration in the needles, indicating disturbances in carbohydrate metabolism. Trees exposed to Ni had higher concentrations of condensed tannins compared with controls. In contrast, concentrations of several other phenolic compounds decreased when seedlings were exposed to high levels of Cu or to a combination of Ni and Cu. The results suggest that concentrations of phenolics in Scots pine needles vary in their responses to Ni and Cu in the forest soil.  相似文献   

8.
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.  相似文献   

9.
In vitro and greenhouse biotests were carried out to study the effects of various concentrations of crude oil on the mycorrhizosphere and the ability of ectomycorrhizal fungi to colonise Norway spruce and poplar seedlings grown on contaminated soil. Ectomycorrhizal fungi grown in pure cultures showed a variety of reactions to crude oil, ranging from growth stimulation to total inhibition of growth, depending on the species of fungi. Germination of poplar and spruce seeds was not significantly affected. The growth of spruce seedlings was not affected by crude oil, whereas that of poplar seedlings was significantly reduced at high concentrations. None of the concentrations had any effect on the degree of ectomycorrhizal and endomycorrhizal colonisation of poplar. With spruce, however, the ectomycorrhizal fungi showed species-specific reactions to increasing concentrations, in accordance with the results of the pure culture test. The length of time between soil contamination and seeding affects both seedling growth and the mycorrhizal infection potential of the soil. The results confirm the importance of mycorrhizal fungi in the bioremediation of soils contaminated by crude oil.  相似文献   

10.
Reclaiming abandoned and unmaintained roads, built originally for forestry and mineral extraction, is an important part of ecological restoration, because the roads running through natural habitats cause fragmentation. The roads can be reclaimed in a passive way by blocking access to the road, but successful seedling recruitment may require additional management due to the physical constraints present at the road. We established a full factorial study to compare the effects of three road reclaiming measures, namely ripping, creation of safe sites by adding mulch and pine seed addition, on soil processes, recovery of understorey vegetation and seedling recruitment in three conservation areas in eastern Finland. We surveyed soil organic matter, frequency and cover of plant functional types, litter and mineral soil, and number of tree seedlings. The soil organic matter was, on average, 1.3-fold in the 50-cm-deep ripping treatment relative to unripped and 20-cm-deep ripping treatments. The germination and survival of deciduous seedlings and grass establishment were promoted by adding mulch. The addition of pine seeds counteracted the seed limitation and enhanced the regeneration of trees. The treatment combination consisting of ripping, adding mulch and pine seed addition enhanced the vegetation succession and tree-seedling recruitment most: the cover of grasses, herbs and ericaceous dwarf shrubs was 1.3–7.6-fold and the number of coniferous tree seedlings was 3.4–7.1-fold relative to the other treatment combinations. Differences between short-term (1–3 years) and longer-term (6 years) results indicate the need for a sufficient observation period in road reclamation studies.  相似文献   

11.
Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, approximately 1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only approximately 1-2% of above-canopy deposition. On average, approximately 800 microg m(-2) of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of approximately 400 and approximately 300 microg m(-2) for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values ( approximately +/- 50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in addition to uptake from soil via transpiration), and that annualized within-canopy elimination is similar to that in controlled-dosing experiments.  相似文献   

12.
In Germany, there is a lack of consistent and comparable data for the time dependent behaviour and spatial distribution of dioxin-like and indicator PCB in ambient air, deposition and plants. The aim of this study was to improve the data on PCDD/PCDF, dioxin-like PCB and non dioxin-like PCB in spruce and pine shoots from different locations and years by retrospective monitoring. The survey was conducted with archived samples of one-year old spruce shoots (Picea abies) and pine shoots (Pinus sylvestris) from the German environmental specimen bank. Two sets of samples from locations in urbanized areas in western and eastern Germany (Warndt and Duebener Heide Mitte, respectively) were investigated as time series. Additionally, spruce shoots from seven different rural locations sampled in the years 2000-2004 were analyzed in order to get an overview about the spatial distribution of PCB and PCDD/PCDF. The analytical results of the samples from the two urbanized areas clearly show that the atmospheric contamination with PCDD and PCDF has declined by about 75% between 1985 and 1997 at Warndt and about 40% between 1991 and 1997 at Duebener Heide. However, concentrations stayed virtually constant at both locations from 1997 to 2004 at a level of about 1 ng WHO-TEQ/kg dry matter (d.m.). Similarly, the investigation of spruce shoots from rural locations from 2000 to 2004 did not reveal a temporal trend at any site. PCDD/PCDF levels were between 0.1 and 1.0 ng WHO-TEQ/kg d.m. At the urbanized location Warndt the six indicator PCB as well as the 12 dioxin-like PCB according to WHO revealed a significant decline by more than 75% between 1985 and 1999. Thereafter, PCB levels stayed virtually constant. At the location Duebener Heide an overall decrease of PCB concentrations in pine shoots of about 60% was detected between 1991 and 2004. Spruce shoots from all locations showed a relevant contribution of dioxin-like PCB to the total WHO toxicity equivalent (PCDD/PCDF+PCB). In most samples, the contribution of dioxin-like PCB was between 21% and 41%. The TEQ contribution of PCB in the samples from three rural sites was higher and similar to the TEQ value of PCDD/PCDF. The investigated pine shoots from the urbanized site Duebener Heide showed a 15-28% contribution of dioxin-like PCB to total TEQ and thus lower than in spruce shoots from different locations. In all samples except one PCB 126 contributed to more than 80% to the PCB-TEQ.  相似文献   

13.
A three-year study was initiated in 1987 to evaluate the impact of O3, acidic precipitation, and soil Mg on ectomycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Thirty-six open-top chambers equipped with a rainfall exclusion/addition system were utilized to administer three levels of O3 (subambient, ambient, or twice ambient) and two precipitation acidity levels (pH 3.8 or 5.2) to seedlings growing in 24-liter plastic pots containing soil having either 35 or 15 mg kg(-1) of exchangeable Mg. Seedlings exposed to the twice ambient O3 treatment exhibited smaller percentages of total ectomycorrhizal short roots at the end of each year of the study, but trends were statistically significant in 1989 only. Changes in number of specific ectomycorrhizal morphotypes in response to O3 were not consistent from year to year. Acidic precipitation treatments had no effect on number or percent of mycorrhizal short roots, and responses of two morphotypes to soil Mg treatments were probably due to differences in the soil environment rather than a result of changes in aboveground processes. Temporal shifts in morphotype frequencies were observed for seedlings in all treatments and indicate that mycorrhizal succession occurred during the study period.  相似文献   

14.
White pine, Norway spruce and red spruce seedlings were exposed to nitric acid vapor concentrations of 10 to 120 ppb in constant stirred tank reactors. Nitric acid dry deposition rates were determined from both the change in nitric acid concentration in the reactor flow stream and from the amount of nitrogen recovered from the seedlings. Nitric acid labeled with 15N was used to distinguish dry-deposited nitrogen in the plant from the nitrogen that was already present. It was found that dry deposition occurs via three routes: surface deposition, trans-cuticular deposition, and stomatal deposition. Resistance to surface deposition is very low (< 4.8 m2-s mol(-1)) for a freshly washed surface, but increases as the surface adsorption sites are occupied. Resistance to trans-cuticular uptake averaged 206 m2-s mol(-1). Stomatal resistance can be calculated from the rate of water diffusion out of the plant. Eighty per cent of the nitric acid deposited via the trans-cuticular and stomatal routes was assimilated by the plant. However, none of the nitric acid deposited on the surface was assimilated. In rural areas with coniferous forests, the combination of low ambient nitric acid concentrations and low initial surface resistance means that most nitric acid will be dry deposited on the tree surface, and thus will not be directly assimilated.  相似文献   

15.
As part of their tailings management, the oil sand industries plan on producing consolidated (composite) tailings (CT), in which an inorganic coagulant aid (gypsum) is added to create a non-segregating deposit. The water associated with this treatment contains potentially phytotoxic levels of sodium, sulfate, chloride, boron, aluminum, fluoride and strontium. Since CT water is expected to saturate deposits in the reclamation areas, it may affect successful reclamation of these sites. Red-osier dogwood (Cornus stolonifera Michx) was demonstrated to be relatively salt resistant and to have high potential for the reclamation of mining areas. In the present study, we used red-osier dogwood to examine the effects of CT water on the accumulation of ions within plant tissue, growth, gas exchange, water potentials and chlorophyll concentration. CT water reduced shoot lengths and dry weights in treated plants. The roots of treated plants accumulated higher concentrations of sodium and chloride than did shoots. The accumulation of sodium and chloride was accompanied by an increase in magnesium and calcium and a decrease in potassium in the roots, while the levels of potassium increased in the leaves. CT water altered gas exchange and water potentials in seedlings, and resulted in a decrease in chlorophyll's a and b. The results suggest that the mechanisms of salt resistance in red-osier dogwood seedlings involve the restriction of sodium transport from roots to shoots.  相似文献   

16.
Four higher plant species (Avena sativa L., oat; Lepidium sativum L., cress; Brassica rapa Metzg., turnip; and Phaseolus vulgaris L., bush bean) and 15 soils including five mineral oil-contaminated soils were tested to assess a soil-based continuous seed germination and early seedling growth bioassay. Seed germination was recorded and the shoot biomass of 14-day seedlings measured. An automatic self-watering system was compared with the daily hand watering. Results obtained from this study show that the self-watering system had minor effects on both seed germination and early seedling growth, and that soil nutrient status rather than soil texture significantly affected both seedling emergence and shoot biomass. Proportional dilution of suspicious samples from primary tests with an appropriate control soil is recommended for secondary tests. Shoot biomass is a more sensitive measurement endpoint than seed germination. Bush bean should not be recommended for use due to its low sensitivity to mineral oil and poor germination in soil.  相似文献   

17.
To understand the role of managed forests in carbon sequestration an understanding of factors controlling soil CO2 efflux will be necessary. This study examined the influence of seedling roots, environmental factors, nutrient availability, and soil characteristics on soil CO2 efflux patterns in a 2-year-old pine plantation in the Virginia Piedmont. Efflux rates were measured both near the base of seedlings and midway between rows in plots that had received fertilization and mulch treatments in a factorial combination. Soil CO2 efflux rates were consistently higher near the base of seedlings, fertilization increased seedling growth with no significant effect on rates. and mulching increased winter efflux rates. In a regression analysis of seasonal soil CO2 efflux, soil temperature explained 42.2% of the variance followed by the interaction of soil temperature and moisture and of soil temperature and plot position, which together explained an additional 9.8% of the observed variance in seasonal rates. During March 2000 measurements, the spatial pattern of soil CO2 efflux between plots was most influenced by differences in soil nitrogen and pine root biomass. Furthermore, spatial differences observed in mean annual efflux rates were found to be highly influenced by the amount of soil coarse fragments in the upper soil profile.  相似文献   

18.
The objective of the present study was to determine the effects of elevated N in dead organic matter on the growth of fungi and to establish the consequences for the development of microbivores. Therefore, three fungal species were cultured on Scots pine litter differing in N content. The growth of the soil fungal species Trichoderma koningii, Penicillium glabrum and Cladosporium cladosporioides was directly influenced by the N content (ranging from 1.25 to 2.19% N) of the substrate. For all three fungal species maximum growth was highest at intermediate N content (1.55%) of the substrate. The fungivorous collembolan Orchesella cincta reached highest asymptotic body mass when fed with C. cladosporioides, grown on litter medium with intermediate N content (1.55%). The growth of O. cincta was lower when fed with C. cladosporioides from litter medium with the highest N content (2.19%). Similar results were obtained in mesocosm experiments in which pine litter with three levels of N (1.11, 1.78, 2.03% N) was used as substrate for the fungi. On litter with the highest N content (2.03%) hyphal length and asymptotic body mass of O. cincta were reduced. The results show that the N content of the substrate determines the growth of both fungi and fungivores, and suggest that elevated levels of N in soil track through the fungal part of the soil food web.  相似文献   

19.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   

20.
Mature grafts of five clones of Sitka spruce (Picea sitchensis Bong. Sarg.) were exposed to simulated acid mist composed of an equimolar mixture of sulphuric acid and ammonium nitrate at pH 2.5 and pH 5.0 in open-top chambers from May to November 1991. Treatments were applied on consecutive days, four times a week. The pH 2.5 treatment provided an overall dose three times higher than that received by forests in upland areas of Britain. Frost hardiness was assessed in November by freezing detached current year shoots at a range of temperatures and assessing the rate of electrolyte leakage Foliar nutrient concentrations were determined on the same shoots. Acid mist at pH 2.5 significantly reduced frost hardiness in four of the five clones; the temperature causing 50% shoot death (LT50) was increased by 0 to 7 degrees C. The clones varied in their level of hardiness, one clone being exceptionally frost sensitive. The frost hardiness of the frost sensitive clone was found to be less perturbed by acid mist than the hardiness of the more frost resistant clones. Mature grafts showed a smaller reduction in hardiness at an equivalent dose than that found previously with Sitka spruce seedlings. Compared with seedlings, grafts had lower absolute concentrations of foliar sulphur. Exposure to acid mist at pH 2.5 increased %S in current year foliage by <0.05% compared with absolute increases of more than 0.10% in current year foliage of seedlings. We conclude that the effect of acid mist on frost hardiness is likely to be less on mature trees than on seedlings and that the increased frost risk to mature trees of Sitka spruce from occult deposition alone is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号