首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An explicit multiphase chemistry model (Atm. Environ. 34 (29/30) (2000) 5015) has been coupled with quasi-spectral microphysics, based upon Berry and Reinhardt's parameterizations (1974a, b). This coupled model has been initialized with polluted conditions as observed at the Puy de Dôme mountain in the center of France and for a maritime cloud.The presence of clouds results in two effects on multiphase chemistry: a direct effect through mass transfer, solubility and reactivity, and an indirect effect through microphysical transfer from cloud water into rainwater and redistribution of reactive soluble species among interstitial air, cloud droplets and raindrops.Results demonstrate that microphysical processes are necessary to sketch out the complex, nonlinear multiphase chemistry in a real cloud. In addition to the direct exchange through mass transfer, incorporation of reactive oxidants such as HOx in droplets can arise and consequently make those species no longer available for reacting in the gas-phase. Moreover, microphysical coalescence conversions favor NOx destruction and enhance the chemical nitric acid production. Coalescence of cloud drops to form rain transfers dissolved species into drops that are undersaturated compared to Henry's law equilibrium. The rain becomes a reservoir for these species, allowing aqueous chemistry to produce more nitric acid than would be possible without the presence of rain.Finally, for the different cloud types, the fate of those intermediate and reactive species is investigated, looking at their budget in clear sky situation versus cloudy and/or rainy situations.  相似文献   

2.
3.
Airborne measurements of the growth of the marine accumulation mode after multiple cycles through stratocumulus cloud are presented. The nss-sulphate cloud residual mode was log-normal in spectral shape and it’s mode radius was observed to progressively increase in size from 0.78 to 0.94 μm over 155 min of air parcel evolution through the cloudy marine boundary layer. The primary reason for this observed growth was thought to result from aqueous phase oxidation of SO2 to aerosol sulphate in activated cloud drops. An aqueous phase aerosol–cloud-chemistry model was used to simulate this case study of aerosol growth and was able to closely reproduce the observed growth. The model simulations illustrate that aqueous phase oxidation of SO2 in cloud droplets was able to provide enough additional sulphate mass to increase the size of activated aerosol. During a typical cloud cycle simulation, ≈4.6 nmoles kg-1air (0.44 μg m-3) of sulphate mass was produced with ≈70% of sulphate production occurring in cloud droplets activated upon sea-salt nuclei and ≈30% occurring upon nss-sulphate nuclei, even though sea-salt nuclei contributed less than 15% to the activated droplet population. The high fraction of nss-sulphate mass internally mixed with sea-salt aerosol suggests that aqueous phase oxidation of SO2 in cloud droplets activated upon sea-salt nuclei is the dominant nss-sulphate formation mechanism and that sea-salt aerosol provides the primary chemical sink for SO2 in the cloudy marine boundary layer.  相似文献   

4.
Box model studies have been performed to study the role of aqueous phase chemistry with regard to halogen activation for marine and urban clouds and the marine aerosol as well. Different chemical pathways leading to halogen activation in diluted cloud droplets and highly concentrated sea salt aerosol particles are investigated. The concentration of halides in cloud droplets is significantly smaller than in sea-salt particles, and hence different reaction sequences control the overall chemical conversions. In diluted droplets radical chemistry involving OH, NO(3), Cl/Cl(2)(-)/ClOH(-), and Br/Br(2)(-)/BrOH(-) gains in importance and pH independent pathways lead to the release of halogens from the particle phase whereas the chemistry in aerosol particles with high electrolyte concentrations is controlled by non-radical reactions at high ionic strengths and relatively low pH values.For the simulation of halogen activation in tropospheric clouds and aqueous aerosol particles in different environments a halogen module was developed including both gas and aqueous phase processes of halogen containing species. This module is coupled to a base mechanism consisting of RACM (Regional Atmospheric Chemistry Mechanism) and the Chemical Aqueous Phase Radical Mechanism CAPRAM 2.4 (MODAC-mechanism). Phase exchange is described by the resistance model by Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, 1986.It can be shown that under cloud conditions the bromine atom is mainly produced by OH initiated reactions, i.e. its concentration maximum is reached at noon. In contrast, the concentration level of chlorine atoms is linked to NO(3) radical chemistry leading to a smaller amplitude between day and night time concentrations.The contribution of radical processes to halogen atom formation in the particle phase is evident, e.g. by halogen atoms which undergo direct phase transfer. Furthermore, the application of the multiphase model for initial concentrations for sea-salt aerosols shows that the particle phase can act as a main source of halogen containing molecules (Cl(2), BrCl, Br(2)) which are photolysed in the gas phase to yield halogen atoms (about 70% of all Cl sources and more than 99% for Br).  相似文献   

5.
The purpose of this paper is to study the redistribution of chemical species (OH, HO2, H2O2, HNO3 and H2SO4) over West Africa, where the cloud cover is ubiquitously present, and where deep convection often develops. In this area, because of these cloud systems, chemical species are redistributed by the ascending and descending flow, or leached if they are soluble. So, we carry out a mesoscale study using the Regional Atmospheric Modelling System (RAMS) coupled to a code of gas and aqueous chemistry (RAMS_Chemistry). It takes into account all processes under mesh. We examine several cases following the period (November and July), with inputs emissions (anthropogenic, biogenic and biomass burning). The radicals OH and HO2 are an indicator of possibilities for chemical activity. They characterize the oxidizing power of the atmosphere and are very strong oxidants. The acids HNO3 and H2SO4 are interesting in their transformation into nitrates and sulfates in precipitation. In November, when photochemistry is active during an event of biomass burning, concentrations of chemical species are higher than those of November in the absence of biomass burning. The concentrations of nitric acid double and sulfuric acid increases 70 times. In addition, the concentrations are even lower in July if there is a deep convection. Compared to measures of the African Monsoon Multidisciplinary Analysis (AMMA), the results and observations of radicals OH and HO2 are the same order of magnitude. Emissions from biomass burning increase the concentrations of acid and peroxide, and a deep convection cloud allows the solubility and the washing out of species, reducing their concentration. Rainfalls play a major role in solubility and washing out acids, peroxides and radicals in this region.  相似文献   

6.
Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C2–C4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m?3 h?1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C2–C4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m?3 h?1 are modelled under the idealised remote and urban cloud conditions.Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO3. Interestingly, oxidation reactions of H2O2 are shown to be competitive to the OH radical conversions in cases when H2O2 is not readily used up by the S(IV) oxidation.  相似文献   

7.
This paper describes the development and evaluation of a computationally efficient semi-empirical photochemical model that can be used as a screening tool to obtain quick estimates of the effect of a large number of VOC and NOx emission control strategies on ozone concentrations. Selected control strategies can subsequently be examined with a more complex model. The model is one component of an ozone management system, the regional ozone decision model (RODM), designed to examine the costs and environmental consequences of alternate ozone abatement strategies.The model was developed by systematic simplification of a detailed photochemical model. At each step of the simplification, the simplified model was tested against observations and against results from the detailed model. The first major simplification was the introduction of a highly parameterized chemistry mechanism, originally developed by Azzi et al. (1992 Proc. 11th Int. Clean Air Conf., 4th Regional IUAPPA Conf.). This modification resulted in a factor of 5 improvement in the computational efficiency of the model. The model with the simplified chemistry was then tested by applying it to a photochemical oxidant episode in the San Joaquin Valley of California. Further improvements in computational speed and efficiency were obtained by uncoupling the chemistry from the transport of VOC and NOx.  相似文献   

8.
This paper presents a global sensitivity and uncertainty analysis of the bromine chemistry included in the Model of Aqueous, Gaseous and Interfacial Chemistry (MAGIC) in dark and photolytic conditions. Uncertainty ranges are established for input parameters (e.g. chemical rate constants, Henry's law constants, etc.) and are used in conjunction with Latin hypercube sampling and multiple linear regression to conduct a sensitivity analysis that determines the correlation between each input parameter and model output. The contribution of each input parameter to the uncertainty in the model output is calculated by combining results of the sensitivity analysis with input parameters' uncertainty ranges. Model runs are compared using the predicted concentrations of molecular bromine since Br2(g) has been shown in previous studies to be generated via an interface reaction between O3(g) and Br(surface)? during dark conditions [Hunt et al., 2004]. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: evidence for interface chemistry. Journal of Physical Chemistry A 108, 11559–11572]. This study also examines the influence of an interface reaction between OH(g) and Br(surface)? in the production of Br2(g) under photolytic conditions where OH(g) is present in significant concentrations. Results indicate that the interface reaction between O3(g) and Br(surface)? is significant and is most responsible for the uncertainty in MAGICs ability to calculate precisely Br2(g) under dark conditions. However, under photolytic conditions the majority of Br2(g) is produced from a complex mechanism involving gas-phase chemistry, aqueous-phase chemistry, and mass transport.  相似文献   

9.
A method based on hourly NWS cloud amount reports is presented for developing a simple model to account for cloud cover in the determination of the nitrogen dioxide photolysis rate constant, k 1 The model is parameterized and verified with direct UV radiometer and k 1 measurements (vs. time of day) collected by Sickles, et al. 1 at Research Triangle Park. Application of our model to variable cloud condition situations indicates that significant improvement in k 1 prediction is obtained by including the influence of cloud cover. Comparison of our model with the radiative transfer calculations of Peterson7 indicates that the particular parameterization of k 1 given here is most representative of average albedo and relatively heavy aerosol loading conditions. Comparison of ozone predictions using hourly averaged k 1 and instantaneous k 1 under conditions of varying cloud cover suggest that the errors resulting from averaging k 1 are largest when variations in solar zenith angle are significant over the hour.  相似文献   

10.
Size-resolved fog drop chemical composition measurements were obtained during a radiation fog campaign near Davis, California in December 1998/January 1999 (reported in Reilly et al., Atmos. Environ. 35(33) (2001) 5717; Moore et al., Atmos. Environ. this issue). Here we explore how knowledge of this size-dependent drop composition—particularly from the newly developed Colorado State University 5-Stage cloud water collector—helps to explain additional observations in the fog environment. Size-resolved aerosol measurements before and after fog events indicate relative depletion of large (>2 μm in diameter) particles during fog accompanied by a relative increase in smaller aerosol particle concentrations. Fog equivalent air concentrations suggest that entrainment of additional particles and in-fog sedimentation contributed to observed changes in the aerosol size distribution. Calculated deposition velocities indicate that sedimentation was an important atmospheric removal mechanism for some species. For example, nitrite typically has a larger net deposition velocity than water and its mass is found preferentially in the largest drops most likely to sediment rapidly. Gas–liquid equilibria in fog for NO3/HNO3, NH4+/NH3, and NO2/HONO were examined. While these systems appear to be close to equilibrium or relative equilibrium during many time periods, divergences are observed, particularly for low liquid water content (<0.1 g m−3) fogs and in different drop sizes. Knowledge of the drop size-dependent composition provided additional data useful to the interpretation of these deviations. The results suggest that data from multi-stage cloud water collectors are useful to understanding fog processes as many depend upon drop size.  相似文献   

11.
An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25?30 %.  相似文献   

12.
A global, three-dimensional tropospheric chemistry model was used to perform simulations of the tropospheric distribution of carbon monoxide (CO) coinciding with NASA's Measurement of Air Pollution from Satellites (MAPS) experiment which took place during 5–13 October 1984. Archived meteorological data for September and October, 1984, were obtained from the European Centre for Medium-Range Weather Forecasting and used to drive the offline chemical transport model simulations. Base-case CO emissions were generated by applying emission factors to compiled inventories for related or co-emitted trace species. Simulation results from September and October have been compared with a recent re-release of the 1984 MAPS data and with in situ correlative data taken during the MAPS mission. Because of unrealistically large spatial variability in N2O mixing ratios measured concurrently by MAPS, model results were also compared with an adjusted CO data set generated by assuming that errors in N2O measured mixing ratios were correlated with errors in the MAPS CO data. These comparisons, in conjunction with simulations probing model sensitivities, led to the conclusion that biomass burning CO emissions from central and southern Africa may have been larger during September and October, 1984, than our initial best estimate based on the CO2 emissions data of Hao et al. (1990. Fire in the Tropical Biota; Ecosystem Processes and Global Challenges. Springer, Berlin, pp. 440–462; 1994. Global Biogeochemical Cycles 8, 495–503). This result is in disagreement with recent estimates of biomass burning emissions from Africa (Scholes et al., 1996, Journal of Geophysical Research 101, 23677–23682) which are smaller than previously thought for emissions from this region. Although unknown model deficiencies cannot be conclusively ruled out, model sensitivity studies indicate that increased CO emissions from central and southern Africa offer the best explanation for reducing observed differences between model results and MAPS data for this time period. Our results, in combination with a disparity in recent CO emission estimates from this region (Scholes et al., 1996; Hao et al., 1996, Journal of Geophysical Research 101, 23577–23584), and in light of recent indications of highly variable biomass burning activities from the tropical western Pacific (Folkins et al., 1997, Journal of Geophysical Research 102, 13291–13299), seem to suggest that biomass burning emissions exhibit significant year-to-year variability. This large variability of emissions sources makes the accurate simulation of specific time periods very difficult and suggests that biomass burning trace species inventories may have to be developed specifically for each simulated time period, employing satellite-derived information on fire coverage and flame intensity.  相似文献   

13.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   

14.
Below-cloud raindrops acidification simulated with a simple model incorporating gas–liquid equilibriums, gas-phase mass transfer, and catalyzed SO2 oxidation in aqueous phase with uptake of gases and scavenging of particles. Ionic contents of various species in raindrops of different size and pH are computed using one-dimensional time-variant model. The model results are based on SO2 and NH3 absorption and collection of calcium aerosols by raindrops with various collection mechanisms. Aqueous concentrations of (SO2)l and (NH3)l and their ionic components in raindrops are found to be increased with the fall distance from cloud base and decrease of drop size. The overall magnitude of pH enhances with the increase in drop size and transient position of raindrops in the atmosphere below the cloud base. The elevated ionic calcium in raindrops by impaction of calcium aerosols of higher inertia neutralizes the acidic components. Acidic ion contents in smaller droplets are found to be significant and resulted pH of raindrop increases with the size and neutralizing potential of alkaline species. The pH values of rainwater contents of predominant size raindrops in bulk samples corresponding to various rainfall intensities are higher as against the individual non-evaporating smaller raindrops. Results are important in view of the impact of showers on earth surfaces during rain containing large number of smaller droplets as compared to the acidification studies of bulk rainwater.  相似文献   

15.
A fully coupled “online” Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the same grid (horizontal and vertical components), and the same physics schemes for subgrid-scale transport. The components also use the same timestep, hence no temporal interpolation is needed. The chemistry package consists of dry deposition (“flux-resistance” method), biogenic emission as in [Simpson et al., 1995. Journal of Geophysical Research 100D, 22875–22890; Guenther et al., 1994. Atmospheric Environment 28, 1197–1210], the chemical mechanism from RADM2, a complex photolysis scheme (Madronich scheme coupled with hydrometeors), and a state of the art aerosol module (MADE/SORGAM aerosol parameterization).The WRF/Chem model is statistically evaluated and compared to MM5/Chem and to detailed photochemical data collected during the summer 2002 NEAQS field study. It is shown that the WRF/Chem model is statistically better skilled in forecasting O3 than MM5/Chem, with no appreciable differences between models in terms of bias with the observations. Furthermore, the WRF/Chem model consistently exhibits better skill at forecasting the O3 precursors CO and NOy at all of the surface sites. However, the WRF/Chem model biases of these precursors and of other gas-phase species are persistently higher than for MM5/Chem, and are most often biased high compared to observations. Finally, we show that the impact of other basic model assumptions on these same statistics can be much larger than the differences caused by model differences. An example showing the sensitivity of various statistical measures with respect to the treatment of biogenic volatile organic compounds emissions illustrates this impact.  相似文献   

16.
As one of the most pervasive environmental problems, Hg pollution in sediment is particularly difficult to remediate because it cannot be decomposed. The application of ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii (C. reinhardtii), a green alga) for the removal of Hg from model and contaminated sediments (Al2O3, α-HgS, and PACS-2 marine sediment) was investigated in this study. Ultrasound was found to enhance Hg release from Al2O3, α-HgS, and PACS-2 marine sediment into the aqueous phase compared to mechanical shaking. A transgenic C. reinhardtii (2AMT-2) expressing a plasmamembrane-anchored metallothionein polymer effectively recovered Hg(II) released into the aqueous phase by sonication over a broad pH range from 2.0 to 9.0. The results showed that this combined technique of ultrasound and alga biomass (2AMT-2) engineered for enhanced metal recovery was effective to remove Hg from solids and sediments, especially from Al2O3 and α-HgS with no natural organic matter. The results of this study are discussed with respect to the development of in situ remediation techniques for Hg-contaminated sediments.  相似文献   

17.
This paper presents a multi-pollutant sensitivity study of an air quality model over Europe with a focus on aerosols. Following the evaluation presented in the companion paper, the aim here is to study the sensitivity of the model to input data, mathematical parameterizations and numerical approximations. To that end, 30 configurations are derived from a reference configuration of the model by changing one input data set, one parameterization or one numerical approximation at a time. Each of these configurations is compared to the same reference simulation over two time periods of the year 2001, one in summer and one in winter. The sensitivity of the model to the different configurations is evaluated through a statistical comparison between the simulation results and through comparisons to available measurements. The species studied are ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3), coarse and fine aerosol particles (PMc and PM2.5), sulfate, nitrate, ammonium, chloride and sodium.For all species, the modeled concentrations are very sensitive to the parameterization used for vertical turbulent diffusion and to the number of vertical levels. For the other configurations considered in this work, the sensitivity of the modeled concentration to configuration choice varies with the species and the period of the year. O3 is impacted by options related to boundary conditions. PMc is sensitive to sea-salt related options, to options influencing deposition and to options related to mass transfer between gas and particulate phases. PM2.5 is sensitive to a larger number of options than PMc: sea-salt, boundary conditions, heterogeneous reactions, aqueous chemistry and gas/particle mass transfer. NO2 is strongly influenced by heterogeneous reactions. Nitrate shows the highest variability of all species studied. As with NO2, nitrate is strongly sensitive to heterogeneous reactions but also to mass transfer, thermodynamic related options, aqueous chemistry and computation of the wet particle diameter. While SO2 is mostly sensitive to aqueous chemistry, sulfate is also sensitive to boundary conditions and, to a lesser extent, to heterogeneous reactions. As with nitrate, ammonium is largely impacted by the different configuration choices, although the sensitivity is slightly lower than for nitrate. NH3 is sensitive to aqueous chemistry, mass transfer and heterogeneous reactions. Chloride and sodium are impacted by sea-salt related options, by options influencing deposition and by options concerning the aqueous-phase module.  相似文献   

18.
Nitrophenols are present in the atmospheric gas phase and in cloud and rainwater. Their formation via aqueous-phase reactions of phenol with the nitronium ion, NO2+, arising from N2O5 and ClNO2 partitioning into the aqueous phase, has been proposed but not verified experimentally. Here, we demonstrate for the first time that gaseous N2O5 and ClNO2 partitioning into dilute aqueous solutions of phenol yields 2- and 4-nitrophenol (and 4-nitrosophenol), but no dinitrophenol isomers. The rate of nitration does not vary significantly between 5 and 20 °C, presumably because of opposing temperature dependences in Henry's law partitioning and reaction rate coefficients. The rate coefficient for reaction of NO2+ with phenol could not be directly quantified but is evidently large enough for this reaction to compete effectively with the reaction between NO2+ and water and to provide a feasible route to nitrophenol production in the atmosphere.  相似文献   

19.
In this study, we present the response of model results to different scientific treatments in an effort to quantify the uncertainties caused by the incomplete understanding of mercury science and by model assumptions in atmospheric mercury models. Two sets of sensitivity simulations were performed to assess the uncertainties using modified versions of CMAQ-Hg in a 36-km Continental United States domain. From Set 1 Experiments, it is found that the simulated mercury dry deposition is most sensitive to the gaseous elemental mercury (GEM) oxidation product assignment, and to the implemented dry deposition scheme for GEM and reactive gaseous mercury (RGM). The simulated wet deposition is sensitive to the aqueous Hg(II) sorption scheme, and to the GEM oxidation product assignment. The inclusion of natural mercury emission causes a small increase in GEM concentration but has little impact on deposition. From Set 2 Experiments, it is found that both dry and wet depositions are sensitive to mercury chemistry. Change in model mercury chemistry has a greater impact on simulated wet deposition than on dry deposition. The kinetic uncertainty of GEM oxidation by O3 and mechanistic uncertainty of Hg(II) reduction by aqueous HO2 pose the greatest impact. Using the upper-limit kinetics of GEM–O3 reaction or eliminating aqueous Hg(II)–HO2 reaction results in unreasonably high deposition and depletion of gaseous mercury in the domain. Removing GEM–OH reaction is not sufficient to balance the excessive mercury removal caused by eliminating the HO2 mechanism. Field measurements of mercury dry deposition, better quantification of mercury air-surface exchange and further investigation of mercury redox chemistry are needed for reducing model uncertainties and for improving the performance of atmospheric mercury models.  相似文献   

20.
Cuvette measurements are a tool to analyse CO2 exchange, transipiration and deposition/emission of different trace gases by plants. To verify these experimental methods and to use them efficiently we have developed a numerical model with atmospheric chemical reactions. The model includes reactions between 54 different chemical species in the gas phase. Using the model we are able to determine optimal size/flow rate ratios and cuvette cycles (closure times) from an experimental point of view. Using the cuvette model with atmospheric chemistry more accurate estimates for emissions/deposition rates of different species can be found. Some chemical reactions are significant, e.g. for NO and terpenes, as regards the analysis and interpretation of measured concentrations. With slower flow rates through a cuvette the significance of reactions is more pronounced. However, there are some species like ozone, where stomatal deposition is a dominant phenomenon and chemistry plays a minor role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号