首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes are not part of either mitigation or restoration planning at present. Long-term planning including burning is needed so that a fire-adapted habitat will develop. Restoration is important in retaining genetic resources, for ameliorating edge effects, as habitat extenders in buffer zones around HCP sites, and by providing areas into which natural stands can expand.  相似文献   

2.
/ Ecological restoration is increasingly invoked as a tool for the maintenance and regeneration of biodiversity. Yet the conceptual foundations and assumptions underlying many restoration management activities are frequently unclear or unstated. Unforeseen, undesirable consequences of restoration activities may emerge as a result. A general conceptual framework for restoration is needed to better accommodate dynamic habitat systems and evolving biota in restoration strategies. A preliminary framework for stream habitat restoration emphasizing stream habitat-biota development is proposed. As developing systems, streams and stream biota exhibit temporal behaviors that change with stream environments. Underlying the dynamic development of streams is potential capacity. Streams express this capacity as an array of habitats over time and across the landscape. Human land uses in the western United States have rapidly altered aquatic habitats and the processes that shape habitat. As a result, the diversity of native fishes and their habitats has been suppressed. Restoration is fundamentally about allowing stream systems to reexpress their capacities. Several steps are provided to guide stream restoration activities. Key tasks include: identification of the historic patterns of habitat development; identification of developmental constraints; relief of those constraints; classification of sensitive, critical, or refuge habitats; protection of the developmental diversity that remains; and monitoring of biotic responses to habitat development. KEY WORDS: Stream habitat; Stream biota; System capacity; System development; Restoration; Classification  相似文献   

3.
Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.  相似文献   

4.
ABSTRACT: The Riverine Community Habitat Assessment and Restoration Concept (RCHARC) was developed to integrate habitat enhancement into the stream restoration process. RCHARC assumes that aquatic habitat quality is closely related to hydraulic diversity based upon a “comparison standard” reach approach to stream restoration. A Beta test was performed by applying the RCHARC process to Rapid Creek in Rapid City, South Dakota. Standard and restored stream reaches were selected and data were collected. A comparison of field data and velocity-depth distributions indicated that the restored stream closely replicated the standard reach. The RCHARC methodology has the potential to assess habitat quality for planned comparison reaches and indicate the level of success resulting from restoration.  相似文献   

5.
This paper focuses on the role of marine parks and reserves in the conservation of Hong Kong's coastal environment. This environment is under serious threat as a result of pollution of marine waters and habitat loss associated with urbanisation, large-scale reclamation projects, and inadequate treatment and disposal of sewage and industrial effluents. The paper discusses whether in a highly urbanised and stressed environment like Hong Kong, which currently lacks a conservation strategy and an overall framework for handling sustainability issues, small marine parks and reserves can be effective in helping to conserve local biodiversity. The paper also suggests that Hong Kong should adopt a broader regional perspective on its coastal conservation and management problems, a perspective that recognises the significance for the territory of the rapid urban and industrial development taking place in neighbouring Guangdong Province. This will require more extensive and focused liaison with Chinese agencies.  相似文献   

6.
Visual‐based rapid assessment techniques provide an efficient method for characterizing the restoration potential of streams, with many focusing on channel stability and instream habitat features. Few studies, however, have compared these techniques to see if they result in differing restoration priorities. Three rapid assessment techniques were contrasted at three wild trout streams in western New York with different amounts of channel disturbance. Two methods focused only on geomorphic stability, whereas the third addressed physical habitat condition. Habitat assessment scores were not correlated with scores for either geomorphic assessment method and they varied more between channels with different degrees of disturbance. A model based on dynamic equilibrium concepts best explains the variation among the streams and techniques because it accounts for a stream's capacity to maintain ecological integrity despite some inherent instability. Geomorphic indices can serve as effective proxies for biological indices in highly disturbed systems. Yet, this may not be the case in less disturbed systems, where geomorphic indices cannot differentiate channel adjustments that impact biota from those that do not. Dynamically stable streams can include both stable and unstable reaches locally as characterized by geomorphic methods and translating these results into restoration priorities may not be appropriate if interpretations are limited to the reach scale.  相似文献   

7.
Abstract: Spatio‐temporal linkages between hydrologic and ecologic dimensions of watersheds play a critical role in conservation policies. Habitat potential is influenced by variation along longitudinal and lateral gradients and land use disturbance. An assessment of these influences provides critical information for protecting watershed ecosystems and in making spatially explicit, conservation decisions. We use an ecohydrologic approach that focuses on interface between hydrological and ecological processes. This study focuses on changes in watershed habitat potentials along lateral (riparian), and longitudinal (stream order) dimensions and disturbance (land use). The habitat potentials were evaluated for amphibians, reptiles, mammals, and birds in the Westfield River Watershed of Massachusetts using geographic information systems and multivariate analysis. We use a polynomial model to study nonlinear effects using robust regression. Various spatial policies were modeled and evaluated for influence on species diversity. All habitat potentials showed a strong influence along spatial dimensions and disturbance. The habitat potential for all vertebrate groups studied decreased as the distance from the riparian zone increased. Headwaters and lower order subwatersheds had higher levels of species diversity compared to higher order subwatersheds. It was observed that locations with the least disturbance also had higher habitat potential. The study identifies three policy criteria that could be used to identify critical areas within a watershed to conserve habitat suitable for various species through management and restoration activities. A spatially variable policy that is based on stream order, riparian distance, and land use can be used to maximize watershed ecological benefits. Wider riparian zones with variable widths, protection of headwaters and lower order subwatersheds, and minimizing disturbance in riparian and headwater areas can be used in watershed policy. These management objectives could be achieved using targeted economic incentives, best management practices, zoning laws, and educational programs using a watershed perspective.  相似文献   

8.
Undamming Rivers: A Review of the Ecological Impacts of Dam Removal   总被引:26,自引:4,他引:22  
Dam removal continues to garner attention as a potential river restoration tool. The increasing possibility of dam removal through the FERC relicensing process, as well as through federal and state agency actions, makes a critical examination of the ecological benefits and costs essential. This paper reviews the possible ecological impacts of dam removal using various case studies. Restoration of an unregulated flow regime has resulted in increased biotic diversity through the enhancement of preferred spawning grounds or other habitat. By returning riverine conditions and sediment transport to formerly impounded areas, riffle/pool sequences, gravel, and cobble have reappeared, along with increases in biotic diversity. Fish passage has been another benefit of dam removal. However, the disappearance of the reservoir may also affect certain publicly desirable fisheries. Short-term ecological impacts of dam removal include an increased sediment load that may cause suffocation and abrasion to various biota and habitats. However, several recorded dam removals have suggested that the increased sediment load caused by removal should be a short-term effect. Preremoval studies for contaminated sediment may be effective at controlling toxic release problems. Although monitoring and dam removal studies are limited, a continued examination of the possible ecological impacts is important for quantifying the resistance and resilience of aquatic ecosystems. Dam removal, although controversial, is an important alternative for river restoration.  相似文献   

9.
With limited financial resources available for habitat restoration, information that ensures and/or accelerates success is needed to economize effort and maximize benefit. In the Central Valley of California USA, riparian habitat has been lost or degraded, contributing to the decline of riparian-associated birds and other wildlife. Active restoration of riparian plant communities in this region has been demonstrated to increase local population sizes and species diversity of landbirds. To evaluate factors related to variation in the rate at which bird abundance increased after restoration, we examined bird abundance as a function of local (restoration design elements) and landscape (proportion of riparian vegetation in the landscape and riparian patch density) metrics at 17 restoration projects within five project areas along the Sacramento River. We developed a priori model sets for seven species of birds and used an information theoretic approach to identify factors associated with the rate at which bird abundance increased after restoration. For six of seven species investigated, the model with the most support contained a variable for the amount of riparian forest in the surrounding landscape. Three of seven bird species were positively correlated with the number of tree species planted and three of seven were positively correlated with the planting densities of particular tree species. Our results indicate that restoration success can be enhanced by selecting sites near existing riparian habitat and planting multiple tree species. Hence, given limited resources, efforts to restore riparian habitat for birds should focus on landscape-scale site selection in areas with high proportions of existing riparian vegetation.  相似文献   

10.
This study performed the first systematic evaluation of the success of habitat mitigation at establishing the threatened Valley elderberry longhorn beetle (Desmocerus californicus dimorphus) and its host plant, blue elderberry (Sambucus mexicana). Habitat mitigation performed through enforcement of the U.S. Endangered Species Act represents a tightly controlled form of habitat restoration, facilitating the evaluation of restoration practice. Restoration plantings of blue elderberry have been substantial in our study area, the Central Valley of California. Surveys of 30 mitigation sites and 16 nearby natural sites showed that mitigation sites were a fraction of the size of natural habitat areas (mean = 24%) and contained smaller shrubs. The beetle colonized 53% of mitigation sites and its populations were denser in sites with moderate levels of dead stems on elderberry shrubs, and moderate damage to elderberry stems and bark. This likely indicates that the beetle responds to stressed shrubs, which are likely to contain elevated levels of nitrogen. Beetle density also increased with the size and age of mitigation sites. This indicates a need to make restoration sites as large as possible and to monitor these sites for longer than current guidelines suggest, thereby allowing more time for convergence of natural and mitigation sites. Few factors examined here directly influenced the growth of elderberry shrubs, but elderberry grew more rapidly in sites closer to riparian areas, indicating that such sites should be favored for mitigation sites.  相似文献   

11.
Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species’ hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on “richness hotspots” may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.  相似文献   

12.
Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.  相似文献   

13.
dentification of groups that are similar in their floristic composition and structure (habitat types) is essential for conservation and forest managers to allocate high priority areas and to designate areas for reserves, refuges, and other protected areas. In this study, the use of indigenous knowledge for the identification of habitat types in the field was compared against an ecological characterization of habitat types, including their species composition obtained by using classification and ordination techniques for a tropical landscape mosaic in a rural Mayan area of Quintana Roo, Mexico. Plant diversity data calculated from 141 sampled sites chosen randomly on a vegetation class’s thematic map obtained by multispectral satellite image classification were used for this propose. Results indicated high similarity in the categorization of vegetation types between the Mayan classification and those obtained by cluster and detrended correspondence analysis. This suggests that indigenous knowledge has a practical use and can be comparable to that obtained by using science-based methods. Finally, identification and mapping of vegetation classes (habitat types) using satellite image classification allowed us to discriminate significantly different species compositions, in such a way that they can provide a useful mechanism for interpolating diversity values over the entire landscape.  相似文献   

14.
Rare habitats are increasingly threatened by fragmentation and measures are required to conserve these valuable resources. Here, we present a method of targeting habitat patches for conservation using a Geographical Information System. We ranked patches of chalk grassland in the Chiltern Hills Area of Outstanding Natural Beauty using simple abiotic criteria, namely: patch area, patch shape, proximity to areas of the same habitat and surrounding land-use type. We compiled a regionally specific list of indicator species and ranked the habitat patches based on their alpha diversity (calculated from species richness). We compared the results of the two ranking schemes and identified key aggregations of the existing reserve network. These could form the basis of future habitat expansion as required by the United Kingdom Biodiversity Action Plan.  相似文献   

15.
The nature of cumulative impacts on biotic diversity of wetland vertebrates   总被引:2,自引:0,他引:2  
There is no longer any doubt that cumulative impacts have important effects on wetland vertebrates. Interactions of species diversity and community structure produce a complex pattern in which environmental impacts can play a highly significant role. Various examples show how wetlands maintain the biotic diversity within and among vertebrate populations, and some of the ways that environmental perturbations can interact to reduce this diversity.The trophic and habitat pyramids are useful organizing concepts. Habitat fragmentation can have severe effects at all levels, reducing the usable range of the larger habitat generalists while threatening the genetic integrity of small, isolated populations. The complexity of trophic interactions, and the propensity, or necessity, of vertebrates to switch from one food source to another—something we know little about—makes using food chain support as a variable for predicting environmental impacts very questionable.Historical instances illustrate the effects of the accumulation of impacts on vertebrates. At present it is nearly impossible to predict the result of three or more different kinds of perturbations, although long-range effects can be observed. One case in point is waterfowl; while their ingestion of lead shot, harvesting by hunters during migration, and loss of habitat have caused waterfowl populations to decline, the proportional responsibility of these factors has not been determined.Further examples show multiplicative effects of similar actions, effects with long time lags, diffuse processes in the landscape that may have concentrated effects on a component subsystem, and a variety of other interactions of increasing complexity. Not only is more information needed at all levels; impacts must be assessed on a landscape or regional scale to produce informed management decisions. I conclude that a system of replicate wetland reserves that are allowed to interact naturally with the surrounding landscape will be more effective in preserving biotic diversity than isolated sanctuaries.  相似文献   

16.
Since returning an ecosystem to its pristine state may not be realistic in every situation, the concept of habitat diversity is proposed to help decision-makers in defining realistic restoration objectives. In order to maintain habitat diversity and enhance the long-term success of restoration, process-oriented projects should be preferred to species-oriented ones. Because the hydrogeomorphological processes that influence biodiversity operate at different spatiotemporal scales, three scales are considered: river sectors, floodplain waterbodies, and mesohabitats within each waterbody. Based on a bibliographical review, three major driving forces are proposed for incorporation into the design of restoration projects: (1) flow velocity and flood disturbances, (2) hydrological connectivity, and (3) water supply. On the sector scale, increased habitat diversity between waterbodies can be achieved by combining various intensities of these driving forces. On the waterbody scale, increased habitat diversity within the ecosystem can be achieved by varying water depth, velocity, and substrate. The concept is applied to a Rhône River sector (France) where three terrestrialized side arms will be restored. Two were designed to be flood scoured, one having an additional supply of groundwater, the other being connected to the river at both ends. The third cannot be scoured by floods because of upstream construction and would be supplied by river backflow through a downstream connection. Habitat diversity within the ecosystem is exemplified on one side arm through the design of a sinuous pathway combined with variation of water depth, wetted width, and substrate grain size. Self-colonization of the side arms is expected owing to the restoration of connectivity to upstream sources of potential colonizers.  相似文献   

17.
Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species' occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.  相似文献   

18.
Arthropods constitute well over one-half of the species of higher life on the planet and are the dominant terrestrial life form on the planet. Unfortunately, very little is known about most arthropod species. There are an estimated 163,487 species of insects in North America, of which only 66% are taxonomically known. Similarly, there are an estimated 35,514 species of North American arachnids, of which only 9316 are described; over 73% have yet to be discovered and described. Without the basic taxonomic and life history knowledge for most of the terrestrial species (i.e., arthropods) of North American ecosystems, land managers are faced with the challenge of developing, selecting, and managing biotic reserves and habitat conservation plans for which they know very little about the majority of organisms found within such reserves or covered by such plans. With respect to arthropods, this challenge includes taking into account poorly described species being used as political tools to stop development (as opposed to actually protecting a truly endangered species), thus confounding the habitat conservation planning process and ensuring that "surprises" in the form of new listings will occur within any multispecies habitat plan. Finally, using various scenarios and assumptions, estimates of the true number of endangered insects and arachnids are provided to illustrate the fact that the suspected number of threatened, endangered, and extinct species is probably low by at least an order of magnitude.  相似文献   

19.
Species-rich semi-natural grasslands have rapidly declined and become fragmented in Northern Europe due to ceased traditional agricultural practices and animal husbandry. Restoration actions have been introduced in many places to improve the habitat conditions and increase the area to prevent any further losses of their ecological values. However, given the limited resources and long time span needed for successful restoration, it is essential to target activities on sites having a suitable initial state and where the effects of restoration are most beneficial for the habitat network. In this paper we present a conceptual framework for evaluating the restoration potential of partially overgrown and selectively managed semi-natural grasslands in a moderately transformed agricultural environment in south-western Finland. On the basis of the spatio-temporal landscape trajectory analysis, we construct potential restoration scenarios based on expected semi-natural grassland characteristics that are derived from land productivity, detected grassland continuum, and date of overgrowth. These scenarios are evaluated using landscape metrics, their feasibility is discussed and the effects of potential restoration are compared to the present extent of open semi-natural grasslands. Our results show that landscape trajectory analysis and scenario construction can be valuable tools for the restoration planning of semi-natural grasslands with limited resources. The approach should therefore be considered as an essential tool to find the most optimal restoration sites and to pre-evaluate the effects.  相似文献   

20.
/ Arthropod communities from several habitats on and adjacent to the El Segundo dunes (Los Angeles County, CA) were sampled using pitfall and yellow pan traps to evaluate their possible use as indicators of restoration success. Communities were ordinated and clustered using correspondence analysis, detrended correspondence analysis, two-way indicator species analysis, and Ward's method of agglomerative clustering. The results showed high repeatability among replicates within any sampling arena that permits discrimination of (1) degraded and relatively undisturbed habitat, (2) different dune habitat types, and (3) annual change. Canonical correspondence analysis showed a significant effect of disturbance history on community composition that explained 5-20% of the variation. Replicates of pitfall and yellow pan traps on single sites clustered together reliably when species abundance was considered, whereas clusters using only species incidence did not group replicates as consistently. The broad taxonomic approach seems appropriate for habitat evaluation and monitoring of restoration projects as an alternative to assessments geared to single species or even single families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号