首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 3 forest simulation model is a process model of tree growth, carbon and nitrogen dynamics in a single-species, even-aged forest stand. It is based on the model. Major changes include the computation of sun angle and radiation as a function of latitude and day of the year, the closed-form integration of canopy production as a function of day and hour, the introduction of tree number, height, and diameter as separate state variables, and different growth strategies, mortalities, and resulting self-thinning as function of crowding competition.The tree/soil system is described by a set of nonlinear ordinary differential equations for the state variables: tree number, base diameter, tree height, wood biomass, nitrogen in wood, leaf mass, fine root mass, fruit biomass, assimilate, carbon and nitrogen in litter, carbon and nitrogen in soil organic matter, and plant-available nitrogen. The model includes explicit formulations of all relevant ecophysiological processes such as: computation of radiation as a function of seasonal time, daytime and cloudiness, light attenuation in the canopy, and canopy photosynthesis as function of latitude, seasonal time, and daytime, respiration of all parts, assimilate allocation, increment formation, nitrogen fixation, mineralization, humification and leaching, forest management (thinning, felling, litter removal, fertilization etc.), temperature effects on respiration and decomposition, and environmental effects (pollution damage to photosynthesis, leaves, and fine roots). Only ecophysiological parameters which can be either directly measured or estimated with reasonable certainty are used. 3 is a generic process model which requires species- and site-specific parametrization. It can be applied to deciduous and coniferous forests under tropical, as well as temperate or boreal conditions.The paper presents a full documentation of the mathematical model as well as representative simulation results for spruce and acacia.  相似文献   

2.
The forest succession model FORDYN is developed based on TREEDEV model. TREEDEV is a process-based tree growth model, that calculates tree growth based on carbon and nitrogen balance, and is calculated using on the photo-production of leaves, respiration, nitrogen content of all organisms and that in soil, and other losses due to respiration, litter and renewal of stems, branches, leaves and roots. In the FORDYN model succession is divided into three phases called early, middle and late succession, and the transition between these three succession phases is distinguished by a difference in leaf area index. As a verification of the model we used the characteristics and available data of a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve (DHS-BR). The model was validated with natural forest data. In addition, a sensitivity analysis was performed in which 30 independent variables were varied and analyzed in connection with their influence on 16 dependent variables describing forest conditions. The simulation results describe the changes in total biomass, carbon and nitrogen change in plant–litter–soil system of an undisturbed monsoon evergreen broad-leaved forest during succession. We compared these findings with simulation in which different logging management strategies were used. The results show that having a longer logging cycle, delaying the first logging time and a smaller logging fraction the scenario can contribute to a sustainable forest development, while still having a positive economic yield.  相似文献   

3.
The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.  相似文献   

4.
提高碳汇潜力:量化树种和造林模式对碳储量的影响   总被引:3,自引:0,他引:3  
王春梅  王汝南  蔺照兰 《生态环境》2010,19(10):2501-2505
全球气候变化背景下,造林再造林固定的碳可以抵消温室气体减限排量。通过造林再造林增加森林面积可以增加林业碳汇,在土地面积有限的情况下,提高造林质量——在有限的造林面积上固定更多的碳是十分必要的。树种和造林模式的选择是增加森林生态系统碳汇的重要管理决策。文章综述了树种和造林模式对生态系统的碳储量的影响。树种从生物量的积累,凋落物和土壤碳储存,以及木材密度、碳贮存量等几个方面探讨其对生态系统碳库的影响。混交林能充分利用立地条件、改善树木营养状况,并且可以减少病虫害和森林火灾。同时分析了我国在森林经营方面存在的问题和改善途径,以期为该领域的研究提供参考。  相似文献   

5.
Reed SC  Cleveland CC  Townsend AR 《Ecology》2008,89(10):2924-2934
Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.  相似文献   

6.
《Ecological modelling》1999,114(2-3):175-193
A carbon-based model has been developed to simulate responses of trembling aspen (Populus tremuloides Michx.) stands to interannual climatic variation and insect defoliation. The model is designed for medium time scale (10–100 years) simulations and requires only daily maximum and minimum temperature and precipitation as meteorological inputs. The modelling approach is similar to FOREST-BGC but includes additional processes known to be important in deciduous forests. These include removal of leaf area during outbreaks of forest tent caterpillar (Malacosoma disstria Hbn.), phenological changes in leaf area index, storage and allocation of non-structural carbohydrate and the contribution of understorey vegetation to evapotranspiration. The model was used for simulations of growth and mortality of biomass carbon in two mature aspen forests located in the climatically dry transition zone between the boreal forest and prairie grassland regions of Saskatchewan, Canada. Model inputs of annual defoliation intensity were based on historic records of insect defoliation and the incidence of light-coloured tree rings in disks or cores collected from aspen at each of the two sites. At both sites, moderately good correlations (r2=0.47–0.54) were obtained between modelled interannual changes in stem carbon growth and observed interannual changes in stem basal area increment obtained from tree-ring analysis. Model outputs of stem biomass carbon were found to be highly sensitive to parameters describing seasonal leaf area duration, insect defoliation intensity, photosynthesis and root respiration and carbohydrate allocation to growth versus storage.  相似文献   

7.
Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias < 6%), with estimates comparable to those obtained with regional allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.  相似文献   

8.
以南亚热带中幼龄针阔混交林为研究对象,通过典型样地调查法,对森林生态系统各个层次进行取样调查,采用12个样地实测数据和已有生物量模型相结合的方法计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-水合加热法。在此基础上,分析了中幼龄针阔混交林碳储量及其分配格局。结果表明,主要造林树种树根、树杆、树枝和树叶碳含量均值分别为45.07%、46.73%、46.30%和47.72%。植物碳含量表现为乔木〉灌木〉草本。乔木碳储量占植被总碳储量比例介于63.38%-94.08%之间,灌木碳储量所占比例介于3.55%-12.67%之间,而草本碳储量仅介于为1.28%-23.95%之间,不同林龄段乔木和灌木碳储量均值随林龄的增加呈上升趋势,而草本碳储量呈下降趋势。土壤碳储量介于106.73-136.61 t·hm^-2之间,土壤碳储量随林龄的增加呈现出先降低后升高的趋势。针阔混交林总碳储量介于134.79-162.60 t·hm^-2之间,分配格局表现为土壤层〉植被层〉凋落物层。土壤层碳储量所占总碳储量比例范围为78.34%-94.45%,植被层所占比例介于4.84%-20.16%之间,凋落物层仅介于0.71%-1.50%之间,中幼龄针阔混交林碳储量主要以土壤固碳为主。研究结果为树种选择、人工林生态系统固碳潜力以及人工碳汇林的经营管理等研究提供科学参考。  相似文献   

9.
A stand-scale forest model has been developed that dynamically simulates, besides carbon (C) and water (H2O) fluxes, wood tissue development from physiological principles. The forest stand is described as consisting of trees of different size cohorts (for example, dominant, co-dominant and suppressed trees), either of the same or of different species (deciduous or coniferous). Half-hourly C and H2O fluxes are modeled at the leaf, tree and stand level. In addition to total growth and yield, the model simulates the daily evolution of tracheid or vessel biomass and radius, parenchyma and branch development. From these data early and latewood biomass, wood tissue composition and density are calculated. Simulation of the labile C stored in the living tissues allows for simulation of trans-seasonal and trans-yearly effects, and improved simulations of long-term effects of environmental stresses on growth. A sensitivity analysis was performed to indicate the main parameters influencing simulated stem growth and wood quality at the tree and stand level. Case studies were performed for a temperate pine forest to illustrate the main model functioning and, more in particular, the simulation of the wood quality. The results indicate that the ANAFORE model is a useful tool for simultaneous analyses of wood quality development and forest ecosystem functioning.  相似文献   

10.
The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.  相似文献   

11.
基于Meta分析的土壤呼吸对凋落物输入的响应   总被引:1,自引:0,他引:1  
凋落物输入是影响土壤呼吸的一个重要因素,然而从国内外目前研究结果来看,土壤呼吸响应凋落物输入的影响因素尚不清楚。利用国内外已发表的30篇研究论文共1393对有效数据,通过Meta分析,从凋落物管理措施、气候、植被、地形、土壤理化性质等因素揭示凋落物输入对土壤呼吸的影响程度。研究发现:与清除凋落物处理相比较而言,(1)凋落物输入后显著增加了土壤呼吸,且土壤呼吸的增加程度呈现出倍增凋落物处理是自然凋落物处理的1.33倍;(2)不同气候条件下的土壤呼吸增加程度呈现出强降雨(>1000 mm)是微弱降雨(<1000 mm)的1.34倍,以及高温气候(>20℃)是低温气候(<20℃)的1.7倍;(3)土壤呼吸的增加程度在不同植被带下呈现出针叶林带(34.1%)>阔叶林带(28%)>混交林带(22%)>草地(17.3%)的趋势;(4)不同海拔梯度条件下土壤呼吸的增加程度呈现出高海拔(59.6%)>中海拔(34.2%)>低海拔(26.7%)的趋势;(5)不同土壤理化性质条件下的土壤呼吸增量呈现出低容重(77.5%)分别是中容重(26.9%)和高容重(18.0%)的2.9倍和4.3倍,同时中性土壤(79.6%)的呼吸增量远远大于酸性(28.2%)和碱性(24.1%)土壤的呼吸增量,以及高土壤碳氮比(81.2%)的土壤呼吸增量远远大于低土壤碳氮比(19.4%)和中土壤碳氮比(29.6%)的土壤呼吸增量。由此可见,凋落物输入后会导致土壤呼吸的显著增加,但是不同气候、不同植被、不同地形、不同土壤理化性质等条件下其土壤呼吸增加的幅度不同。  相似文献   

12.
The forest litter decomposition model (FLDM) described in this paper provides an important basis for assessing the impacts of forest management on seasonal stream water quality and export of dissolved organic carbon (DOC). By definition, models with annual time steps are unable to capture seasonal, within-year variation. In order to simulate seasonal variation in litter decomposition and DOC production and export, we have modified an existing annual FLDM to account for monthly dynamics of decomposition and residual mass in experimental litterbags placed in 21 different forests across Canada.The original annual FLDM was formulated with three main litter pools (fast, slow, and very slow decomposing litter) to address the fact that forest litter is naturally composed of a mixture of organic compounds that decompose at different rates. The annual FLDM was shown to provide better simulations than more complex models like CENTURY and SOMM.The revised monthly model retains the original structure of the annual FLDM, but separates litter decomposition from nitrogen (N) mineralization. In the model, monthly soil temperature, soil moisture, and mean January soil temperature are shown to be the most important controlling variables of within-year variation in decomposition. Use of the three variables in a process-based definition of litter decomposition is a significant departure from the empirical definition in the annual model. The revised model is shown to give similar calculations of residual mass and N concentration as the annual model (r2 = 0.91, 0.78), despite producing very different timeseries of decomposition over six years. It is shown from a modelling perspective that (i) forest litter decomposition is independent of N mineralization, whereas N mineralization is dependent on litter decomposition, and (ii) mean January soil temperature defines litter decomposition in the summer because of winter-temperatures’ role in modifying forest-floor microorganism community composition and functioning in the following summer.  相似文献   

13.
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios.  相似文献   

14.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   

15.
The Yellow River Delta region in China is a land area of 1,200,000 ha with rich natural resources. Adverse environmental conditions, such as low rainfall and high salinity, promote the dominance of black locust trees for afforestation. With the increase of CO2 in the atmosphere, this forest and others throughout the world have become valued for their ability to sequester and store carbon. Forests store carbon in aboveground biomass (i.e. trees), belowground biomass (i.e. roots), soils and standing litter crop (i.e. forest floor and coarse woody debris). There are well-developed methods to sample forest ecosystems, including tree inventories that are used to quantify carbon in aboveground tree biomass. Such inventories are used to estimate the types of roundwood products removed from the forest during harvesting. Based on standard plot inventories and stem analyses, carbon sequestration estimates of trees were 222.41 t ha?1 for the Yellow River Delta region accounted for 67.12% of the whole forest. Similarly, carbon storage by herbaceous matter and soil was 0.50 and 50.34 t ha?1, respectively. The results suggest that carbon sequestration in the forest ecosystem was performed by most of the forest, which plays an increasingly important role in sequestering carbon as the stand grows.  相似文献   

16.
Atmospheric nitrogen (N) deposition can increase forest growth. Because N deposition commonly increases foliar N concentrations, it is thought that this increase in forest growth is a consequence of enhanced leaf-level photosynthesis. However, tests of this mechanism have been infrequent, and increases in photosynthesis have not been consistently observed in mature forests subject to chronic N deposition. In four mature northern hardwood forests in the north-central United States, chronic N additions (30 kg N ha(-1) yr(-1) as NaNO3 for 14 years) have increased aboveground growth but have not affected canopy leaf biomass or leaf area index. In order to understand the mechanism behind the increases in growth, we hypothesized that the NO3(-) additions increased foliar N concentrations and leaf-level photosynthesis in the dominant species in these forests (sugar maple, Acer saccharum). The NO3(-) additions significantly increased foliar N. However, there was no significant difference between the ambient and +NO3(-) treatments in two seasons (2006-2007) of instantaneous measurements of photosynthesis from either canopy towers or excised branches. In measurements on excised branches, photosynthetic nitrogen use efficiency (micromol CO2 s(-1) g(-1) N) was significantly decreased (-13%) by NO3(-) additions. Furthermore, we found no consistent NO3(-) effect across all sites in either current foliage or leaf litter collected annually throughout the study (1993-2007) and analyzed for delta 13C and delta 18O, isotopes that can be used together to integrate changes in photosynthesis over time. We observed a small but significant NO3(-) effect on the average area and mass of individual leaves from the excised branches, but these differences varied by site and were countered by changes in leaf number. These photosynthesis and leaf area data together suggest that NO3(-) additions have not stimulated photosynthesis. There is no evidence that nutrient deficiencies have developed at these sites, so unlike other studies of photosynthesis in N-saturated forests, we cannot attribute the lack of a stimulation of photosynthesis to nutrient limitations. Rather than increases in C assimilation, the observed increases in aboveground growth at our study sites are more likely due to shifts in C allocation.  相似文献   

17.
川西高山森林生态系统林下生物量及其随林窗的变化特征   总被引:1,自引:0,他引:1  
作为森林生态系统的重要组成部分,林下植被及其残体的分布受到林冠层的影响,但迄今有关林窗对林下植被和残体生物量的影响尚无研究报道.于2013 年8 月2 日至20 日,以海拔3 600 m 的川西岷江冷杉原始林林下植被为研究对象,根据区域内的坡向和林分组成等因素设置3 个100 m×100 m 的典型样地,调查其生物量及其随林窗的变化特征.在每个样地内选择3 个大林窗,在林窗、林缘和林下分别设置3 个20 m×20 m 的样方,调查粗木质残体长度或高度、大小头直径、枯立木记录胸径、腐烂等级等;在林窗、林缘和林下分别设置3 个5 m×5 m 的样方,采用“收获法”收集样方内直径在2.5-10 cm之间的细木质残体和灌木生物量;在林窗、林缘和林下分别设置3 个1 m×1 m 的样方来调查凋落物储量和草本生物量;在1m×1 m 的样方内随机选择1 个20 cm×20 cm 的小样方来调查地被植物生物量.结果表明,(1)川西高山森林生态系统总生物量为72.75 t·hm^-2,其中林下生物量为67.92 t·hm^-2,占生态系统生物量的95.17%.活体植被以灌木为主,其生物量为9.81t·hm^-2;残体部分以粗木质残体为主,其储量为53.00 t·hm^-2;(2)林窗对灌木、草本、地被植物的影响各不相同,且不同物种的灌木生物量表现出不同的分布规律;草本生物量表现出明显的“边缘效应”,在林缘显著高于林下;林窗和林缘的地被植物生物量相对较低;(3)粗木质残体储量从林下到林窗呈现减小的趋势,但总体储量仍然较大,林窗和林缘的细木质残体储量高于林下.这些结果为认识高山森林生态系统林下生物量及其格局,以及林窗在森林生态系统的重要作用提供了基础理论依据.  相似文献   

18.
森林土壤有机层生化特性及其对气候变化的响应研究进展   总被引:8,自引:0,他引:8  
森林土壤有机层是指累积在土壤表面未分解到完全分解的有机残余物质,在全球碳循环中具有十分重要的作用和地位.目前有关森林土壤有机层的生态研究主要集中于土壤有机层的凋落物储量、水土保持功能、生物多样性保育功能及其生化特性等,而有关其对气候变化响应的研究报道还相当少见,且已有的研究主要关于土壤有机层的碳源/汇动态等,有关森林土壤有机层生化特性对气候变化响应的研究还相对较少,这与其在全球气候变化中的作用和地位是极不相称的.过去10a中,有关土壤有机层生化特性对气候变化响应的研究主要包括土壤有机层的微生物数量、微生物生物量、呼吸作用、有机物质分解动态(凋落物分解)、酶活性等对环境变化的响应等方面.进一步的控制实验研究被认为是相当重要的.参51  相似文献   

19.
Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earth's very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted from free Google Earth images.  相似文献   

20.
林伟  郑博福  胡理乐  郭建明 《生态环境》2011,20(12):1831-1835
建立林木生物量模型是估算森林生物量的重要方法之一,叶面积指数(Leaf Area Index,简称LAI)和材积与林木密切相关,是否可通过建立森林生物量与LAI或材积的相关模型来估算森林生物量,进而估算森林碳储量,值得探索。以井冈山自然保护区两种典型森林类型(常绿阔叶林和人工杉木林)为研究对象,分乔木层、植被层和总体(植被层+土壤层)3部分分别计算碳密度,并对它们与叶面积指数LAI和材积之间的相关性进行分析。结果表明:常绿阔叶林总体碳密度为38.915kg/m^2,高于人工杉木林的27.460kg/m^2;两种森林类型乔木层和植被层碳密度与材积具有很好的相关性(R^2〉0.97),在与LAI的相关性分析中,人工杉木林乔木层和植被层碳密度与LAI相关系数达到0.7以上,相关关系显著,而常绿阔叶林各层碳密度与LAI的相关性不明显;在森林总体碳密度与LAI和材积的相关性分析中发现,只有常绿阔叶林总体碳密度与材积的R^2为0.7116,达到显著水平,其它相关性水平均不显著。因此,利用材积与生物量和碳储量的相关关系来推算井冈山森林生物量和碳储量的方法是可行的,通过叶面积指数来推算森林生物量和碳储量的方法还有待进一步研究探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号