共查询到18条相似文献,搜索用时 80 毫秒
1.
基于GSI(网格点统计插值)同化系统和WRF-Chem模式,利用高分辨率的气象自动站观测资料和天气雷达资料进行同化和模拟预报,针对2017年11月4~5日发生在我国京津冀地区的一次污染过程,对比研究了气象资料同化对PM2.5模拟效果的影响.结果表明,WRF-Chem模式能较为准确地预报出北京-石家庄-邯郸的污染带分布和演变,低层风场辐合是污染带形成的主要气象因素;无同化的控制试验由于地层风场辐合较强,高估了污染带上的PM2.5浓度,同化试验减小了低层的风场辐合,同时增高了地面温度并抬升了边界层高度,从而降低了污染带上PM2.5的浓度;预报检验分析表明,同化试验的预报效果整体好于控制试验,0~36h的平均BIAS(标准偏差)和RMSE(均方根误差)分别降低了7.55和5.42μg/m3,MFB(平均相对偏差)和MFE(平均相对误差)分别降低了28.8%和9.4%,同化试验在预报的第10~30h时段上的改善效果最为显著. 相似文献
2.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素. 相似文献
3.
将基于卫星遥感数据的CO2与PM2.5纳入统一研究框架,运用多期双重差分等方法,在城市尺度上分析评估2007~2019年中国低碳城市政策对CO2减排与PM2.5污染控制的协同效应及其影响机制.研究发现:低碳城市CO2与PM2.5减排的协同效应十分显著,低碳政策使试点城市的CO2排放量和大气PM2.5浓度分别下降3.2%和0.74%,且结论在一系列稳健性检验后依然成立.机制分析表明,改善公共交通环境是低碳城市建设实现协同效应的最主要途径.低碳城市政策的协同效应存在地区差异,经济发展水平高、产业结构水平高的城市以及非资源型城市的协同效应更为显著.对此,应充分发挥协同效应,进一步加快低碳城市建设,实现CO2和PM2.5等大气污染物协同治理. 相似文献
4.
5.
通过对2013—2020年邯郸市的大气污染物浓度及气象参数进行统计分析,探究了大气污染物的浓度变化特征,运用轨迹聚类分析和潜在源贡献因子法(PSCF)研究了邯郸市复合污染日PM2.5和O3的传输路径及潜在源区.结果表明:邯郸市PM2.5-O3复合污染出现在3—10月,与单O3污染相比,PM2.5-O3复合污染时的O3峰值浓度和平均浓度较高,当温度为19.1~25.7℃,湿度为32%~63%,风速较低时,最有利于PM2.5-O3复合污染发生;单O3污染和复合污染期间的O3主要来自邯郸周围的短距离传输,单PM2.5污染主要来自西北气流的长距离运输和邯郸周围的短距离传输,而复合污染日期间的PM2.5主要来自西北气流的长距离运输;相较于单O3污染,2013、2014、2... 相似文献
6.
2009年1月-2011年12月在武汉光谷商业区选取G、H两点,采集颗粒物样品,分析了PM10和PM2.5浓度,采用离子色谱测定了灰霾期间PM2.5中4种水溶性阴离子。结果表明:G点PM10和PM2.5年平均浓度分别超过《环境空气质量标准》(GB 3095-2012)二级浓度限值的1.48~1.73倍和1.94~2.4倍,H点分别超标1.16~1.4倍和1.26~1.86倍。灰霾期间PM2.5中主要水溶性阴离子为NO3-、SO42-、NO2-和Cl-,G点4种水溶性阴离子占PM2.5中总水溶性离子的比例分别是为20.29%、10.16%、9.51%和4.62%,H点为14.41%、30.12%、6.64%和3.83%。G点NOx-浓度约为SO42-浓度的3倍,而H点SO42-浓度约为NOx-浓度的1.5倍。G与H点NOx-和SO42-离子浓度的差异暗示两监测点的主要污染源不同,交通量和植被覆盖率可能是导致两点浓度差异的原因。。 相似文献
7.
文章通过对PM2.5的基本组成、来源与影响因素的分析,构建中国PM2.5全过程管理体系,建立、完善PM2.5削减和控制长效机制,进而实现中国PM2.5管理。 相似文献
8.
PM2.5扩散/积聚有着复杂的物理、化学过程,其时空变化与前体污染物及气象条件密切相关.为探究区域城市ρ(PM2.5)的变化规律,以天山北坡经济带城市为研究区,采用2015年1月-2017年10月大气污染物监测数据和气象数据,结合数理统计和GIS空间分析技术,分析研究区ρ(PM2.5)的时空变化特征;借助普通OLS(最小二乘法)分析影响因子的多重相关性,通过PLS(偏最小二乘)法构建ρ(PM2.5)估算模型.结果表明:①研究区各城市小时ρ(PM2.5)呈\"W\"型双峰变化;各月份ρ(PM2.5)呈\"U\"型特征,月均值为59.5 μg/m3,2月和9月分别为ρ(PM2.5)最高月和最低月;各季节ρ(PM2.5)排序为冬季(146.6 μg/m3)>秋季(35.2 μg/m3)>春季(34.1 μg/m3)>夏季(26.8 μg/m3);空间上ρ(PM2.5)由西北部克拉玛依市向东南部乌鲁木齐市逐渐增大.②PLS法构建模型能有效克服自变量多重相关性的问题,模型可解释自变量95.7%和因变量80.1%的变异信息,年均模拟值与实测值偏差为9.82%.③研究区各城市ρ(PM2.5)与ρ(CO)的相关性极显著,与气象因子中的风速和气温的相关性较显著,而与相对湿度的相关性不显著.研究显示,基于前体污染物和气象因子的PLS法构建模型是模拟ρ(PM2.5)的有效方法. 相似文献
9.
综述了环境中PM2.5的研究现状,重点围绕其来源、化学组成及组分分析方法进行介绍,并对工业园区PM2.5的监控进行展望。 相似文献
10.
大气细粒子和臭氧是影响我国城市空气质量的主要污染物质,其浓度的大小不仅与污染源的排放量有关,气象条件也是影响其浓度分布特征的重要因素.要评估污染物减排措施的效果,有必要将气象条件的影响剥离出来,仅评估排放量的降低对污染物浓度长期变化趋势的影响.本文使用KZ(Kolmogorov-Zurbenko)滤波方法对河北省石家庄、保定、张家口三市2013—2017年PM_(2.5)和O_3逐日浓度时间序列进行分解,并使用同期地面气象观测数据对各时间序列进行逐步回归分析,将经过KZ滤波后的长期序列与经逐步回归后的结果的差值再次进行滤波处理,得到去除气象影响的污染物浓度长期变化趋势,该浓度仅与污染物的排放量有关.结果表明,因污染源排放的影响,河北省三市大气PM_(2.5)浓度在研究年内除在2017年初略有上升以外,其余季节均呈下降趋势.河北省三市大气O_3浓度在研究年内均有波动上升趋势.气象条件对PM_(2.5)浓度长期变化趋势的影响大于O_3. 相似文献
11.
12.
运用连续颗粒物采样仪(URG Model 2000-01J)对贵阳市城区大气颗粒物PM2.5进行了连续3个月(9~11月)的采集与分析,探讨了PM2.5的浓度分布特征、气象条件的影响。结果显示,贵阳市大气颗粒物PM2.5的平均质量浓度为53±27μg/m3,变化范围为3.7~186μg/m3;初步推断大气颗粒物PM2.5的污染来源主要是燃料燃烧、生物质燃烧、汽车尾气等人为源;相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。 相似文献
13.
对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素. 相似文献
14.
为研究2013年8月5~11日嘉兴地区一次光化学事件形成的高浓度O3污染的变化特征及成因,对8月2~14日的主要污染气体(O3、NO2、NO、CO、SO2)、颗粒物(PM10、PM2.5)以及气象要素进行了观测分析.结果表明,嘉兴污染日的O3平均浓度是正常日的2.4倍,超标率多在29.0%以上,9日超标率高达45.8%,此次污染事件是高温下剧烈的光化学反应以及低湿低风速的稳定天气形势共同作用造成的.污染日和正常日的O3日变化均呈单峰分布,峰值出现在14:00左右,O3在污染日和正常日生成期的增长速率分别为50.3μg·(m3·h)-1和21.6μg·(m3·h)-1,在消耗期的下降速率分别为16.8μg·(m3·h)-1和23.4μg·(m3·h)-1,NO、NO2和CO在污染日的浓度分别是正常日的1.1、1.5和1.5倍,为光化学反应提供了有利的反应条件.污染日PM2.5浓度、PM10浓度、PM2.5/PM10的比值分别是正常日的2.5、2.3、1.1倍,污染日大气光化学反应异常活跃,更有利于细颗粒物的生成. 相似文献
15.
自2013年以来,由于大气污染防治行动计划的实施,中国空气质量得到显著改善. 气象条件的变化对空气质量改善的作用十分复杂,包括影响空气污染物的排放、输送、扩散和化学转化等过程,已有研究单纯评估气象条件影响,其影响机制不清. 基于WRF-CMAQ模型及过程分析(PA)工具,评估了2013~2020年气象要素变化对京津冀地区PM2.5浓度改善的影响,并进一步分析了气象条件对于大气污染物在传输、扩散和转化过程中的作用,为深入认识我国环境空气质量改善提供了技术支撑. 结果表明,2013~2017年气象因素使得ρ(PM2.5)降低5.4 μg·m-3,2017~2020年使ρ(PM2.5)升高11.6 μg·m-3. 2013~2017年,气溶胶化学过程、垂直传输和水平传输过程,是影响PM2.5的主要过程; 2017~2020年,主要受到气溶胶化学过程、水平传输和垂直传输影响. 相似文献
16.
参考美国Ben MAP软件,提出城市PM_(2.5)健康损害评估的基本框架,并就评估方法和参数使用中的关键问题进行了论述,包括人群健康损害评估指标的确定、空间尺度和时间尺度的选择、健康终点的界定、人群年龄结构的划分、比较的基准的确定,以及\"剂量-反应\"关系参数和生命价值参数的选择等.本文收集和整理了2014年北京市空气质量监测点PM_(2.5)浓度监测数据及暴露人口、基期死亡率等数据,运用\"向标准靠拢(Rollback to Standard)\"的方法,估算北京市PM_(2.5)达到空气质量标准情景下的浓度值,以此作为比较的基准,使用美国Ben MAP数据库收录的\"剂量-反应\"关系参数,分别基于\"工资-风险\"法模型和人力资本法模型估计生命价值参数,代入本文城市PM_(2.5)健康损害评估的基本框架,计算2014年北京市PM_(2.5)对人群健康的损害. 相似文献
17.
随着城市化和工业化进程的加快,空气颗粒物污染成为城市最为严峻的环境问题之一.依据植被的横向结构、竖向结构及植被类型3个因子对宝鸡市公园绿地进行划分,并选取11种不同植被结构的绿地,在分析地点、时间、风速、温度、相对湿度、绿地面积等环境因子对绿地内空气中ρ(PM2.5)和ρ(PM10)\"本底效应\"影响的基础上,探究不同植被结构绿地对空气颗粒物质量浓度削减作用的差异.结果表明:①在不同监测地点和监测时段内,ρ(PM2.5)和ρ(PM10)有极显著差异,植物养护管理程度较高的城市公园绿地对空气颗粒物质量浓度削减作用较为明显,一天中空气颗粒物质量浓度呈现出早晚高、中午低的变化趋势;②风速、温度、相对湿度对ρ(PM2.5)和ρ(PM10)有极显著影响,在晴朗、无风或微风天气条件下,ρ(PM2.5)和ρ(PM10)随风速的增大、温度的减小、相对湿度的增大而增大,且ρ(PM10)变化范围大于ρ(PM2.5);③1 hm2以下绿地面积的变化对ρ(PM2.5)和ρ(PM10)无显著影响;④不同植被结构绿地内ρ(PM2.5)无显著差异,但ρ(PM10)有极显著差异,其中开敞式以灌木为主的绿地中ρ(PM10)最低,多层闭合式阔叶林中ρ(PM10)最高,其余9种植被结构绿地削减作用居中且相近.研究显示,不同植被结构的城市公园绿地对ρ(PM2.5)和ρ(PM10)的削减作用存在一定的差异且受多种环境因素的共同制约,可为优化城市绿地植被结构进而有效改善空气质量提供依据. 相似文献
18.
为了研究北京市气象因子与车流量、车速等交通因子对PM2.5、PM10浓度水平的影响,在市区三环主路及居民区选取了28个采样点,采集滞尘量,PM2.5、PM10浓度、车速、车流量、温度、湿度、风速等数据.通过3个月的滞尘质量分析,得出交通源对空气质量的影响是显著的,其中三环主道路两侧采样点和远离交通源对照点滞尘均值分别为0.284 g和0.016 g.再由道路口与居民区对比实验(局部实验)得出,居民区采样点测得的PM2.5和PM10浓度均低于道路口颗粒物浓度,差值均值分别为101 074 n·(cf)-1和15 386 n·(cf)-1,同时PM2.5白天浓度一般低于夜间.最后结合最佳子集预测模型分析得出,PM2.5和PM10受到湿度和温度的影响最大,车速、车流量、风速次之,其中车速、车流量、低风速对颗粒物PM2.5的影响比对PM10的影响更为显著. 相似文献