首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
R. E. Black 《Marine Biology》1972,16(2):134-137
Levels of DNA, RNA, and protein were measured in scyphistomae of the scyphozoans Aurelia aurita and Chrysaora quinquecirrha during strobilation. In synchronously developing populations of A. aurita, the amount of DNA per polyp increases 41 to 260% during strobilation, whereas RNA and protein remain relatively constant. The RNA/DNA ratio drops by about 50% during strobilation in both C. quinquecirrha and A. aurita, and protein/DNA decreases by 50% in A. aurita. Specific RNA reserves are probably not accumulated in advance of strobilation, since strobilation is blocked immediately in both species by 1 to 3 g/ml actinomycin D. The size and DNA content of polyps are usually increased by prolonged incubation at temperatures of 12° to 15°C, which facilitates strobilation; however, the RNA/DNA and protein/DNA ratios of such polyps are not significantly increased by the cold conditioning.Contribution No. 472 from the Virginia Institute of Marine Science.  相似文献   

2.
Rate-temperature responses in scyphozoan medusae and polyps   总被引:1,自引:0,他引:1  
The effects of temperature on oxygen consumption and spontaneous rhythmic activity have been investigated in various stages of the life histories of 3 species of jellyfish from the Chesapeake Bay, USA. All 3 species clearly show the ability to acclimate positively to temperature change. Thermal sensitivity of metabolism in the winter medusa Cyanea capillata fulva is fairly low at temperature intervals which are experienced in nature. Polyps of the two summer medusae, Chrysaora quinquecirrha and Aurelia aurita, show reduced metabolic sensitivity at temperatures normally accompanying high developmental activity and the onset of strobilation.  相似文献   

3.
Scyphopolyps and scyphomedusae of Cassiopea andromeda Forskål (Cnidaria, Scyphozoa) containing dinoflagellate endosymbionts (zooxanthellae) were investigated for rates and pathways of carbon fixation. Photosynthesis by the algae, accounting for 80 and 15 mol C h-1 on a dry weight basis in medusae and polyps, respectively, by far exceeds dark incorporation of inorganic carbon by the intact association. Photosynthetic carbon fixation is operated via C3 pathway of carbon reduction. DCMU-treatment (1×10-6 M and 1×10-5 M) completely inhibits light-dependent carbon assimilation. Major photosynthates presumably involved in a metabolite flow from algal symbionts to animal tissue are glycerol and glucose. A total of 5–10% net algal photosynthate appears to be seleased in vivo to the host. This is probably less than the energy supply ultimately required for the nutrition of the polyps and medusae. The presence of zooxanthellae proved to be indispensable for strobilation in the scyphopolyps. However, photosynthesis by algal symbionts as well as photosynthate release is obviously not essential for the initiation of ephyrae as is shown by DCMU-treatment, culture in continous darkness, and aposymbiotic controls. It is therefore concluded that strobilation is supported, but not triggered by algal photosynthetic activity. The induction of strobilation thus seems to depend on a more complex system of regulation.  相似文献   

4.
Scyphistomae of Cassiopea andromeda Forskål, 1775 containing symbiontic zooxanthellae did not develop medusae at a constant temperature of 20°C, but monodisc strobilation was initiated after transfer of the polyps to 24°C. After release of the ephyrae and regeneration of the hypostome and tentacular region, the recovered polyps either produced vegetative buds or entered a new strobilation phase. Formation of motile, planula-like buds was not found to be indicative of unfavourable environmental conditions. Intensity of budding was positively correlated with available food and with increase of temperature. Budding was negatively correlated with the number of polyps maintained per dish and with the conditioning of the sea water. Under optimal feeding and temperature conditions, polyps could simultaneously produce chains of buds at 2 to 4 budding regions. Settlement and development of buds into scyphistomae was suppressed in pasteurized sea water and in pasteurized sea water containing antibiotics, but polyps developed from buds in the presence of algal material taken from the aquarium, debris or egg shells of Artemia salina, or on glass slides which had been incubated in used A. salina culture medium. Several species of marine bacteria were detected after staining these slides. One, a Gramnegative coccoid rod, which was identified as a nonpathogenic Vibrio species, was isolated, cultivated as a pure strain, and was proved to induce the development of C. andromeda buds into polyps. Millipore filter-plates coated with Vibrio sp. cells grown in suspension culture were ineffectual, but diluted filtrate initiated polyp morphogenesis. The inducing factor is obviously not a constituent of the bacterial cell surface, but is a product of growing Vibrio sp. cells released into the medium. This product was found to be relatively heat-stable and dialyzable. As to the basic mechanism involved in the induction of polyp formation, it is suggested that the inducing factor (s) acts bimodally by inducing pedal disc development and by eliminating a head inhibitor originating from the basal end of the bud. The life history, and various aspects of medusa-formation and of vegetative reproduction in scyphozoans are reviewed and discussed with particular reference to rhizostome species. Special attention has been paid to some reports of larval metamorphosis controlled by marine bacteria.  相似文献   

5.
Rhopilema nomadica is an Indopacific scyphomedusan, which has migrated into the eastern Mediterranean in recent years. Large aggregations of the medusae were recorded in Haifa Bay, Israel, reaching 5.5×105 medusae per square nautical mile during summer 1989. The life cycle ofR. nomadica from planula to young medusa is described. Fertilization is external and planulae are formed within a few hours at 20°C. After settlement, polyps were fed withArtemia sp. nauplii and developed into polydisc strobilae within 45 d. The strobilation process was completed within 7 d, and the liberated ephyrae developed into young medusae within 2 mo. Asexual reproduction occurred mainly via podocyst formation. The population explosion ofR. nomadica could be attributed to its high reproductive potential.  相似文献   

6.
The successful invasion of non-indigeneous species depends on initial colonization as well as establishing a self-maintaining population. The invasive hydrozoan Moerisia lyonsi (Boulenger, 1908), possibly originating from low-salinity waters in the Black Sea and Middle East regions, has become established in low-salinity waters in several estuaries of North America, including Chesapeake Bay. The effects of temperature and salinity on mortality of M. lyonsi polyps were examined in the laboratory in February 2001 in the presence of abundant food. The polyps of M. lyonsi were directly transferred from 20°C and 10 salinity to one of 45 combinations of temperature (10–29°C) and salinity (1–40). Polyp mortality within 7 days occurred only in low-temperature treatments with salinities of 35–40. Surviving polyps reproduced asexually in salinities of 1–40 at 20–29°C, and in salinities of 1–25 at 15°C, but not in any salinities at 10°C. The greatest asexual reproduction rates, an index for population survival potential, occurred at salinities of 5–20. Survival and reproduction of M. lyonsi over such broad temperature and salinity ranges indicate that M. lyonsi may colonize and establish populations throughout the Chesapeake Bay; however, M. lyonsi medusae were reported only at salinities <9.3 there. This discrepancy may be due to the effects of predators. The scyphomedusan Chrysaora quinquecirrha (Desor, 1848), but not the ctenophore Mnemiopsis leidyi (A. Agassiz, 1865) consumed M. lyonsi medusae in laboratory experiments in August–September 2001. Populations of M. lyonsi do not appear to be limited by temperature and salinity conditions; however, their distribution in Chesapeake Bay may be restricted to low salinities not inhabited by predators.Communicated by J.P. Grassle, New Brunswick  相似文献   

7.
The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 is known to be eaten by the scyphomedusan Chrysaora quinquecirrha (Desor, 1948), which can control populations of ctenophores in the tributaries of Chesapeake Bay. In the summer of 1995, we videotaped interactions in large aquaria in order to determine whether M. leidyi was always captured after contact with medusae. Surprisingly, M. leidyi escaped in 97.2% of 143 contacts. The ctenophores increased swimming speed by an average of 300% immediately after contact with tentacles and 600% by mid-escape. When caught in the tentacles of C. quinquecirrha, the ctenophores frequently lost a portion of their body, which allowed them to escape. Lost parts regenerated within a few days. The striking ability of M. leidyi to escape from C. quinquecirrha may be critically important in maintaining ctenophore populations in situ. Received: 14 November 1996 / Accepted: 4 December 1996  相似文献   

8.
K. A. Pitt 《Marine Biology》2000,136(2):269-279
 The life history and settlement preferences of larvae of Catostylus mosaicus (Scyphozoa: Rhizostomeae) (Quoy and Gaimard, 1824) were investigated in New South Wales, Australia, over a 2 mo period beginning in November 1998. The life history consisted of an alternation between a sexual, medusoid stage and an asexual, polypoid stage, and was similar to that described for other rhizostomes. Planula larvae were brooded by the adults. Approximately 4 d after collection, larvae settled on a variety of substrata including wood, sandstone, shell, seagrass and glass, and metamorphosed into four-tentacled polyps. The number of tentacles increased and polyps strobilated when they had between 12 and 20 tentacles. Strobilation occurred within 15 d of settlement, but only polyps that settled on the concave surfaces of the shells strobilated. Both monodisk and polydisk strobilation was observed. Ephyrae were raised for one month and were observed developing oral arms. Polyps reproduced asexually via the formation of podocysts, by production of buds, and by partial fission. Received: 30 April 1999 / Accepted: 27 August 1999  相似文献   

9.
The morphogenesis of ephyrae of Atorella vanhoeffeni Bigelow, 1909 (Werner, 1967) and of Nausithoe maculata Jarms, 1990 during strobilation is described. We found differences in the developmental pattern of marginal structures and structural changes of longitudinal muscle tubes in particular. During strobilation the polyp’s tetraradiate symmetry is passed to the ephyra of both taxa as a tetraradiate central symmetry that we consider a major plesiomorphic character. The present results also indicate divergent patterns of ephyra development during strobilation that lead to variable marginal symmetries of ephyrae and thus of medusae. Therefore, the marginal symmetry of medusae of N. maculata is octoradiate and of A. vanhoeffeni is hexaradiate. We conclude the latter is stated as derived pattern. These results lead us to maintain both families Nausithoidae and Atorellidae.  相似文献   

10.
The life cycle of Lychnorhiza lucerna (Scyphozoa: Rhizostomeae) and the settlement preferences of its larvae were studied using laboratory-based rearing experiments. Mature medusae of L. lucerna were collected from the beach of the Río de la Plata estuary, Argentina. This species displayed the typical metagenetic, (i.e. medusoid and polypoid), life cycle reported for other rhizostomes. The fertilized eggs developed into motile and short lived planulae. The majority of planulae settled on the air-water interface (p < 0.001). Of those that settled on the settlement plates provided, no significant differences were observed between styrene slides, glass slides and shells of the bivalve Mactra isabelleana (p > 0.05). No planulae settled on stones. Several hours after planulae settled, they metamorphosed into sessile four-tentacled scyphistomae. Most scyphistomae attached onto the air-water interface. At 19–22°C, the scyphistomae grew up to 22 tentacles and reached 1,500 μm height. The scyphistomae increased their numbers by means of formation of podocysts from which new polyps emerged and strobilated. Strobilation occurred 46 days after settlement. Only polydisk strobilation was observed and each strobila always produced three ephyrae. After releasing ephyrae, strobilae returned to normal scyphistomae and were capable of repeating strobilation. A single founder polyp was estimated to produce up to 60 ephyrae over 4 months. Ephyrae developed into metephyrae 15 days after release at 19–22°C. In this paper we describe the morphological and some behavioural features of L. lucerna in the polypoid and early medusoid stages.  相似文献   

11.
Corals harbouring genetically mixed communities of endosymbiotic algae (Symbiodinium) often show distribution patterns in accordance with differences in light climate across an individual colony. However, the physiology of these genetically characterised communities is not well understood. Single stranded conformation polymorphism (SSCP) and real time quantitative polymerase chain reaction (qPCR) analyses were used to examine the genetic diversity of the Symbiodinium community in hospite across an individual colony of Acropora valida at the spatial scale of single polyps. The physiological characteristics of the polyps were examined prior to sampling with a combined O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabling simultaneous measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface as a function of increasing irradiances. Both sun- and shade-adapted polyps were found to harbour either Symbiodinium clade C types alone or clades A and C simultaneously. Polyps were grouped in two categories according to (1) their orientation towardps light, or (2) their symbiont community composition. Physiological differences were not detected between sun- and shade-adapted polyps, but O2 concentration at 1,100 μmol photons m−2 s−1 was higher in polyps that harboured both clades A and C symbionts than in polyps that harboured clade C only. These results suggest that the acclimatisation of zooxanthellae of individual polyps of an A. valida colony to ambient light levels may not be the only determinant of the photosynthetic capacity of zooxanthellae. Here, we found that photosynthetic capacity is also likely to have a strong genetic basis and differs between genetically distinct Symbiodinium types.  相似文献   

12.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

13.
During the years 1982 to 1986, the life cycles and population dynamics of three scyphozoans, Aurelia aurita (L.), Cyanea capillata (L.) and C. lamarckii (Person and Lesueur), were studied in the Gullmar Fjord on the Swedish west coast. The settling of planulae, strobilation of scyphistomae and release of ephyrae were followed on ceramic settling plates in the laboratory and in the field. Weekly to bi-weekly hauls with Bongo nets were used to study the abundance of ephyrae and medusae. The results show great differences in the life cycles and ecology of the three species. A. aurita utilizes the best season for scyphistoma growth (August to September) and strobilates during the highest zooplankton abundance in October. C. capillata strobilates during the spring (March to May), and the abundance of C. capillata medusae is more dependent on immigration from the North Sea than A. aurita. C. lamarckii does not reproduce at all in the Gullmar Fjord and is totally dependent on immigration from the North Sea. The possibility of interspecific competition between A. aurita and C. capillata is discussed. A preliminary experiment showed that scyphistomae of A. aurita eat planula larvae of C. capillata during the autumn.  相似文献   

14.
Two types of metamorphosis occur in the life cycle of Carybdea marsupialis Linnaeus 1758 (Cubozoa, Carybdeidae). In addition to the metamorphosis described several times over, during which the entire polyp transforms into one medusa, we investigated a second type of metamorphosis which leaves a regenerative remnant. This mode of medusa formation seems to be derived from the strobilation known from Scyphozoa. Both types are described and the implications these results have on the idea about the origin of the class Cubozoa, are discussed.  相似文献   

15.
Sabine Holst 《Marine Biology》2012,159(12):2707-2722
Jellyfish blooms or invasions could be detected in an early phase of development if the youngest medusa stages (ephyrae) and their early growth stages (post-ephyrae) were identifiable in plankton samples but a useful identification key for ephyrae in early growth stages is lacking for most species. In the present study, the identification characteristics of adult North Sea scyphomedusae (Aurelia aurita, Cyanea capillata, Cyanea lamarckii, Chrysaora hysoscella, Rhizostoma octopus) collected around the island of Helgoland (German Bight) in July?CAugust 2003 and 2004 are described. Planula larvae were measured and reared to polyps in the laboratory. The process of ephyrae development asexually produced by the polyps (strobilation) was photo-documented. Photographs of the ephyrae growth stages were combined with drawings of features useful for the species identification. The provided identification key allows discrimination among post-ephyrae from plankton samples, probably leading to conclusions on the development of jellyfish blooms and their causes.  相似文献   

16.
The effects of daily light period on diurnal growth patterns of a green macroalga [Caulerpa cupressoides v.lycopodium f.elegans (J. Agardh) Weber-van Bosse] and a seagrass (Halophila decipiens Ostenfeld) were investigated in Salt River submarine canyon in the US Virgin Islands in summer 1984. The daily light period, in which quantum irradiance exceeded the light saturation point for photosynthesis of the macroalga and seagrass, was manipulated in situ using lamps and shades. Plant growth was measured every 6 h for 7 d under natural and experimental daily light periods.C. cupressoides grew at the same rate day and night.H. decipiens grew more during the day than at night, a pattern that persisted under continuous light and dark treatments, indicating endogenous control of diurnal growth. Growth vs daily light period curves indicate thatC. cupressoides grew faster thanH. decipiens in short daily light periods, consistent with the observation that the macroalga penetrates to deeper water than the seagrass in Salt River canyon. Overall growth (day + night) ofH. decipiens was unaffected in lengthened light periods and reduced in shortened light periods. Chlorophyll content ofC. cupressoides was not correlated with light availability, while that ofH. decipiens was positively correlated. The alga and seagrass had different diurnal growth patterns but similar overall growth responses to daily light periods. This study shows that diurnal growth patterns are probably under endogenous control, while overall growth is a response to in situ light conditions.Contribution#193 from West Indies Laboratory and the National Undersea Research Program  相似文献   

17.
The respiratory physiology of summer diapausing eggs of the neustonic copepodAnomalocera patersoni, maintained under constant temperature (13 °C) and light (12 h light:12 h dark) conditions, was characterized by a bell-shaped curve, with low O2 uptake levels at the beginning of dormancy. This was followed by a steady rise in O2 consumption with maximum levels of 0.002 l O2 embryo–1 h–1 70 d after spawning. A slow diminution in O2 uptake then occurred until Day 150 when minimum values of 0.0003 l O2 embryo–1 h–1 were recorded, coinciding with the hatching of the first embryos. Embryos continued to hatch asynchronously up to 360 d from the moment of egg laying. When eggs were subjected to 20 °C, the respiratory activity was almost three times higher than at 13 °C, even though both respiratory curves were similar. The elevated metabolism in eggs kept at 20 °C led to death of the embryos possibly due to a total depletion of metabolic reserves. ATP content also differed at the two temperatures. Diapause eggs kept at 20 °C showed no rapid rise in ATP content as opposed to those kept at 13 °C. The results of temperature shock experiments, in which eggs were first kept at winter temperatures for several weeks, after which the temperature was raised to 20 °C for another number of weeks prior to a second period of chilling at 13 °C, showed that as long as embryos were kept at 20 °C no hatching occurred. By contrast, hatching was observed after 10 d following the resumption of winter temperatures, suggesting that low environmental temperatures are an essential prerequisite for hatching of these eggs. The type of diapause inA. patersoni differs considerably from the one described in insects and in another neustonic copepod,Pontella mediterrana. In this case, there is a U-shaped respiratory curve with greatest O2 consumption prior to the onset or upon breaking of diapause. Differences in the two types of diapause seem to involve not only differences in O2 consumption levels but also in the sequence of metabolic changes with time and the metabolic requirements during sommer and winter dormancy.  相似文献   

18.
A non-thecate dinoflagellate, Gymnodinium splendens, was studied in a 12 d laboratory experiment in 2.0x0.25 m containers in which light, temperature, and nutrients could be manipulated. Under a 12 h light: 12 h dark cycle, the dinoflagellates exhibited diurnal vertical migrations, swimming downward before the dark period began and upward before the end of the dark period. This vertical migration probably involved geotaxis and a diel rhythm, as well as light-mediated behavior. The vertical distribution of nitrate affected the behavior and physiology of the dinoflagellate. When nitrate was present throughout the container, the organisms resembled those in exponential batch culture both in C:N ratios and photosynthetic capacity (Pmax); moreover, they migrated to the surface during the day. In contrast, when nitrate was depleted, C:N ratios increased, Pmax decreased, and the organisms formed a subsurface layer at a depth corresponding to the light level at which photosynthesis saturated. When nitrate was present only at the bottom of the tank, C:N ratios of the population decreased until similar to those of nutrient-saturated cells and Pmax increased; however, the dinoflagellates behaved the same as nutrient-depleted cells, forming a subsurface layer during the light period. Field measurements revealed a migratory subsurface chlorophyll maximum layer dominated by G. splendens. It was just above the nitracline during the day, and in the nitracline during the night, which concurs with our laboratory observations.  相似文献   

19.
Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha   总被引:2,自引:2,他引:0  
The semaeostome scyphomedusa, Chrysaora quinquecirrha (Desor, 1848), is an abundant and important planktonic predator in estuaries and coastal waters of the eastern USA during the summer. We videotaped free-swimming medusae in the laboratory and in the field in order to determine the relationship between swimming motions and prey encounter with capture surfaces. Medusae were collected from the Choptank River (Chesapeake Bay) in September 1992 and in the Niantic River, Connecticut, USA in July 1994. We used newly hatched Artemia sp. nauplii and fluorescein dye to trace water motions around swimming medusae. Swimming results in a pulsed series of toroids which travel along the medusan oral arms and tentacles. Prey are entrained in this flow and the location of naupliar encounter was influenced by the phase of the pulsation cycle during which entrainment occurred. Flow-field velocities, measured by tracking particles adjacent to the bell margin during contraction, increased with bell diameter. Received: 29 March 1997 / Accepted: 11 April 1997  相似文献   

20.
Ammonium excretion rates of recently collected specimens of gelatinous zooplankton, the scyphomedusan Chrysaora quinquecirrha DeSor and the etenophore Mnemiopsis leidyi A. Agassiz, were correlated with body mass and water temperature in measurements made from April to October 1989 and 1990. Rates ranged between 3.5 and 5.0 g atoms NH 4 + -N (g dry wt)-1h-1 for C. quinquecirrha and 3.0 to 4.9 g atoms NH 4 + -N (g dry wt)-1h-1 for M. leidyi. Excretion rate equations and in situ data on the size distributions and biomasses of gelatinous zooplankters and water temperature were used to estimate the contribution of ammonium by medusae and ctenophores to mesohaline Chesapeake Bay waters on several dates during April to October 1989 and 1990. We then compared the estimated contributions to direct measurements of 15NH 4 + uptake by microplankton. The maximum estimated regeneration by gelatinous zooplankton was 5.8 g atoms NH 4 + -N m-3h-1 at night in August 1990, when medusae biomass was greatest. This represents about 4% of the ammonium required by the microplankton. During the daytime on all dates, less than 1% of the ammonium required by microplanktion was supplied by gelatinous zooplankton. Therefore, gelatinous zooplankton appear to play a minor role in the ammonium cycle of Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号