首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
The finless porpoise (Neophocaena phocaenoides) inhabits a wide range of tropical and temperate waters of the Indo-Pacific region. Genetic structure of finless porpoises in Chinese waters in three regions (Yangtze River, Yellow Sea, and South China Sea) was analyzed, including the Yangtze finless porpoise which is widely known because of its highly endangered status and unusual adaptation to freshwater. To assist in conservation and management of this species, ten microsatellite loci were used to genotype 125 individuals from the three regions. Contrary to the low genetic diversity revealed in previous mtDNA control region sequence analyses, relatively high levels of genetic variation in microsatellite profiles (H E = 0.732–0.795) were found. Bayesian clustering analysis suggested that finless porpoises in Chinese waters could be described as three distinct genetic groups, which corresponded well to population “units” (populations, subspecies, or species) delimited in earlier studies, based on morphological variation, distribution, and genetic analyses. Genetic differentiation between regions was significant, with F ST values ranging from 0.07 to 0.137. Immigration rates estimated using a Bayesian method and population ancestry analyses suggested no or very limited gene flow among regional types, even in the area of overlap between types. These results strongly support the classification of porpoises in these regions into distinct evolutionarily significant units, including at least two separate species, and therefore they should be treated as different management units in the design and implementation of conservation programmes.  相似文献   

2.
Carbon and nitrogen stable isotope ratios of Japanese anchovy (Engraulis japonicus) and their stomach contents were examined and compared among various regions around Japan. Geographical variations in the isotope ratios were found between inshore and Pacific offshore regions. While most of the anchovy samples had isotope ratios around −17.6‰ for δ13C and 10.0‰ for δ15N as median values, higher (more enriched) isotope values were found in the anchovy sampled from inshore regions. On the contrary, lower (more depleted) values were found mostly in the anchovy from the Pacific offshore region including the Kuroshio Extension and Kuroshio-Oyashio transition zones. Higher carbon isotope ratios in the inshore regions may reflect a carbon source from benthic primary producers in addition to phytoplankton possibly through the consumption of the larvae of benthic organisms such as bivalves or decapods, which were found in the stomach contents of the inshore anchovy. Variations in the nitrogen isotope ratio may reflect not only differences in the trophic level of prey species, but also variations in the baseline level of food webs. Stable isotope ratios are potentially a useful tool for understanding the stock/population structure and migration of anchovy. The present findings indicate the potential importance of the “inshore–offshore” variations in the biology of Japanese anchovy populations in the northwestern Pacific waters.  相似文献   

3.
Oxygen uptake was measured and energy budgets were determined for eggs and larvae of bay anchovy (Anchoa mitchilli), sea bream (Archosargus rhomboidalis) and lined sole (Achirus lineatus). Using an energetics model, both minimum rations and prey levels were estimated. The QO 2 [μl (mg dry wt)-1 h-1] increased approximately five-fold for all species during development from egg to feedingstage larvae. The weight exponents in power functions, R=aWb, relating oxygen uptake (R) to dry weight (W) did not differ significantly among species. The exponents were: bay anchovy, 0.9770; sea bream, 0.8382; lined sole, 0.9416. Oxygen uptake was generally lower for bay achovy than for the other species. In the energy budgets issimilation efficiencies of all species were low (24–75%). Gross growth efficiencies ranged from 11–41%, and net growth efficiencies from 38–57%. An estimated 32–83% of ingested energy was excreted in feces and urine. The lavae used a relatively small proportion of ingested energy in metabolism (6–31%). The anchovy had the lowest assimilation and gross growth efficiencies, and the highest excretion rate. Consistent with the better growth and survival observed in previous experiments, sea bream were the most efficient assimilators and had the lowest required minimum rations. Required minimum prey levels for first-feeding larvae ranged from 400 copepod nauplii l-1 for sea bream and bay anchovy to 1 000 l-1 for lined sole. The estimated required prey levels were higher than levels at which significant survival had been observed.  相似文献   

4.
This study aims to describe the variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea and to identify possible relationships between this variability and the features of different feeding areas, the behavior, and the energetic needs of albacore. Stomach contents from albacore caught in five zones of the Bay of Biscay and surrounding waters (n = 654) and three zones of the Mediterranean Sea (n = 152) were analyzed in terms of diet composition and stomach fullness. Carbon and nitrogen stable isotope and C/N ratios were measured for white muscle and liver from albacore in the Bay of Biscay (n = 41) and Mediterranean Sea (n = 60). Our results showed a spatial, seasonal, inter-annual, and size-related variability in the diet of albacore. Albacore diet varied by location in the Mediterranean Sea, with a particularly high proportion of cephalopods, and low δ15N values in the Tyrrhenian Sea. In the Northeast Atlantic, albacore consumed a higher proportion of crustaceans and a lower proportion of fishes in the most offshore sampling zone than inshore. The digestion states of the major prey reflected a diurnal feeding activity, indicative of feeding in deeper waters offshore, whereas on the continental slope, feeding probably occurred in surface waters at night. Important seasonal and inter-annual diet variability was observed in the southeast of the Bay of Biscay, where preferred albacore prey appeared to be anchovy (Engraulis encrasicolus). Stomach fullness was inversely related to body size, probably reflecting higher energetic needs for smaller individuals. Albacore from the Bay of Biscay had significantly lower δ13C and higher δ15N values compared with albacore from the Mediterranean Sea, indicative of regional baseline shifts, and trophic position and muscle lipid stores in albacore increased with body size.  相似文献   

5.
The existence of three distinct populations is widely accepted for the finless porpoise (Neophocaena phocaenoides) in Chinese waters: the Yellow Sea, Yangtze River, and South China Sea populations. Here, we use nine species-specific microsatellite loci, the complete mitochondrial DNA control region (912 bp), and the complete mitochondrial cytochrome b gene (1,140 bp) to further investigate potential population stratification in the Yellow Sea using 147 finless porpoise samples from the Bohai Sea and adjacent northern Yellow Sea, two regions that were largely underrepresented in previous genetic studies. Our F-statistics analyses confirm the previously described three populations, but further demonstrate significant genetic differentiation between the [Bohai + northern Yellow] Sea and the southern Yellow Sea. On the other hand, median-joining network analyses do not exhibit well-differentiated haplotype groups among different geographic populations, suggesting the existence of shared ancestral haplotypes. Levels of microsatellite diversity are moderate to high (mean H E = 0.794) among the 147 [Bohai + northern Yellow] Sea finless porpoises and no recent bottleneck was detected, whereas mtDNA control region and cytochrome b gene diversity is low to moderate. The microsatellite genotypic and mtDNA haplotypic data also confirm the presence of mother-calf pairs in single-net bycatch cases. The results presented here highlight the necessity to treat the [Bohai + northern Yellow] Sea population (highly impacted by anthropogenic threats) as a separate Management Unit.  相似文献   

6.
Growth and diet were compared among larvae of Japanese anchovy Engraulis japonicus, Japanese sardine Sardinops melanostictus and Pacific round herring Etrumeus teres. Compositions of prey items of the three species in the same month showed greater similarity than for the same species in different months. Prey size as well as prey taxa of the three species overlapped considerably with one another. Therefore, interspecific prey competition is likely in the case of limited food availability. The most abundant species tended to change from anchovy to round herring in early winter, from round herring to sardine in late winter and from sardine to anchovy in early spring, indicating a temporal segregation in use of the nursery grounds. Similar seasonal changes in growth rates were observed for the three species. Although interspecific prey competition is likely, the temporal segregation and similar temporal changes in growth rates could favor their coexistence.  相似文献   

7.
E. D. Houde 《Marine Biology》1977,43(4):333-341
Bay anchovy (Anchoa mitchilli) eggs were stocked at densities from 0.5 to 32.0 l-1 and larvae were fed on wild plankton (copepod nauplii) in concentrations that ranged from 50 to 5000 prey l-1. Lined sole (Achirus lineatus) eggs were stocked at 0.5 to 16.0 l-1 and larvae were fed wild plankton at concentrations from 50 to 1000 prey l-1. Some larvae of each species survived at all stock and food levels to the transformation stage at 16 days after hatching. Survival rates for both species exceeded 40% when food concentration was 1000 l-1 or higher. Growth and dry weight yields also increased significantly at the higher food concentrations. Effects of initial stocking density were not well defined, but both survival and growth decreased at the highest stocking rates. Standardized culture of bay anchovy and lined sole larvae can be based on a food concentration of 1000 copepod nauplii l-1 to routinely produce healthy larvae.  相似文献   

8.
Diel swimming behaviors of juvenile anchovies (Anchoa spp.) were observed using stationary hydroacoustics and synoptic physicochemical and zooplankton profiles during four unique water quality scenarios in the Neuse River Estuary, NC, USA. Vertical distribution of fish was restricted to waters with DO greater than 2.5 mg O2 l−1, except when greater than 70% of the water column was hypoxic and a subset of fish were occupying water with 1 mg O2 l−1. We made the prediction that an individual fish would select a swim speed that would maximize net energy gain given the abundance and availability of prey in the normoxic waters. During the day, fish adopted swim speeds between 7 and 8.8 bl s−1 that were near the theoretical optimum speeds between 7.0 and 8.0 bl s−1. An exception was found during severe hypoxia, when fish were swimming at 60% above the optimum speed (observed speed = 10.6 bl s−1, expected = 6.4 bl s−1). The anchovy is a visual planktivore; therefore, we expected a diel activity pattern characteristic of a diurnal species, with quiescence at night to minimize energetic costs. Under stratified and hypoxic conditions with high fish density coupled with limited prey availability, anchovies sustained high swimming speeds at night. The sustained nighttime activity resulted in estimated daily energy expenditure over 20% greater than fish that adopted a diurnal activity pattern. We provide evidence that the sustained nighttime activity patterns are a result of foraging at night due to a lower ration achieved during the day. During severe hypoxic events, we also observed individual fish making brief forays into the hypoxic hypolimnion. These bottom waters generally contained higher prey (copepod) concentrations than the surface waters. The bay anchovy, a facultative particle forager, adopts a range of behaviors to compensate for the effects of increased conspecific density and reduced prey availability in the presence of stratification-induced hypoxia.  相似文献   

9.
Massive losses of eelgrass Zostera marina beds in Japan have occurred over the past 100 years. Toward their restoration, transplantation of eelgrass has been attempted in some areas, including Tokyo Bay. This study examined population genetic structures and gene flow in eelgrass in Tokyo Bay to establish guidelines for conducting restoration. Genotypes of a total of 360 individuals from 12 beds were determined using five microsatellite markers. The eelgrass beds in inner bay had above-average genetic diversity. A neighbor-joining tree based on F ST values among beds revealed that a strong gene flow had occurred among six beds in the inner bay. Genetic assignment testing of drifting shoots indicated that those with seeds migrate in both directions between the inner and outer bay. We suggested that the restoration of eelgrass in the innermost part of Tokyo Bay, where natural habitats have been lost, should be conducted using the inner bay beds.  相似文献   

10.
In August 1989, oxygen deficient conditions of bottom waters occurred in the Chinhae Bay together with a steep pycnocline. Dissolved oxygen contents were lower than 1 ml/l from 3 m depth in the inner Masan Bay and from 10 m depth in the outer Masan Bay. in Kohyonsong Bay, surface salinity was about 29%° and an oxygen deficient condition occurred in the bottom waters. Near Somodo Island, surface waters containing more than 30 μ/l of chlorophyll α and over 50 μmol/l of nitrate could be distinguished. in Masan Bay ammonia and phosphate concentrations increased with increasing depth suggesting the active degradation of organic materials in the bottom waters and leaching from sediments.

In Kohyonsong Bay, nitrate contents ranged from 1.9 to 5.4 μmol/l in the surface waters and subsurface maximum of chlorophyll α could be observed. ETS activity was 286.1 μl O2/l-h in the surface waters of Masan Bay and respiratory oxygen consumption is likely to proceed at a rate of 1320 ml O2/m2-d in the bottom waters of this bay. Primary productivity was 15.60 gC/m2-d in the inner Masan Bay and 0.75 gC/m2-d in Kohyonsong Bay.

In Masan Bay, amino acids content in the sinking materials collected by the sediment trap deployed at the bottom layer was 264 mgC/m2-d. This amount is equivalent to 6.8% of the amino acids produced in the water column by primary production. in Kohyonsong Bay 95 mg/Cm2-d of amino acids was collected corresponding to 50.8% of amino acids produced in the water column. in Kohyonsong Bay large faecal pellets produced in shellfish farms were easily settled in the sediment because of the weak current regime.  相似文献   

11.
E. D. Houde 《Marine Biology》1974,26(3):271-285
In larvae of the bay anchovy Anchoa mitchilli (Valenciennes), the sea bream Archosargus rhomboidalis (Linnaeus), and the lined sole Achirus lineatus (Linnaeus), growth, survival, and starvation times were investigated at temperatures of 22° to 32°C. The rate at which hours after hatching until starvation decreased in relation to temperature for unfed larvae did not differ significantly among the 3 species, ranging from-5.4 to-6.3 h per degree increase in temperature. The total number of hours until starvation did differ for all 3 species: lined soles survived longest, bay anchovies were intermediate, and sea bream survived the least time. At 28°C, unfed sea bream could survive 90.1 h, bay anchovy 102.3 h, and lined sole 119.8 h. The eyes pigmented at nearly the same time after hatching for sea bream and bay anchovy, but took about 20 h longer at all temperatures for lined sole. Quadratic equations best described the relationship between hours after hatching when the eyes became pigmented and temperature. Eye-pigmentation times became nearly constant for all 3 species at temperatures above 28°C. At 28°C, eyes pigmented about 27 h after hatching for bay anchovy and sea bream but not until 47 h for lined sole. Hours after eye pigmentation when unfed larvae starved was a measure of the effective time that larvae had to commence feeding. Bay anchovies and lined soles were nearly alike in this respect, but sea bream starved at tewer hours after eye pigmentation. Slopes of regressions representing decrease in times to staration for increasing temperatures ranged from-3.7 to-4.4 h per degree increase in temperature, and were not significantly different among the 3 species. At 28°C, unfed lined soles starved at 70 a after eye pigmentation, bay anchovies starved at 72.5 h, and sea bream at only 62 h. Yolk absorption was most rapid for all species during the first 20 h after hatching, and was faster at higher temperatures. Amounts of yolk remaining at the time eyes became pigmented were less at higher temperatures for bay anchovy and lined sole, but were greater for sea bream, suggesting that sea bream used yolk more efficiently at higher temperatures. Either no yolk or small traces (>0.20%) remained at 24 h after eye pigmentation in all 3 species. Feeding was delayed for periods of 8, 16, 24, 32, 40 and 48 h after eye pigmentation for all species at a series of experimental temperatures from 24° to 32°C. Growth and survival were affected when food was withheld for more than 24 h at 28°C, but survival did not decrease markedly until food was withheld at least 8 h longer. At lower temperatures food could be withheld longer and at higher temperatures for less time. Feeding can be initiated by most larvae for several hours after all visible yolk reserves have been exhausted. All species tested can survive for 24 to 40 h after eye pigmentation at 24° to 28°C without food and still have relatively good growth and survival when food is offered. If the “critical period” is considered relative to time of hatching, lined soles need not find food for 3 to 3.5 days after hatching, but bay anchovy and sea bream must feed within 2.5 days of hatching.  相似文献   

12.
Aerial sighting surveys were conducted in 2000 to evaluate the distribution and abundance of finless porpoise Neophocaena phocaenoides in the Inland Sea of Japan. We flew 60 north–south transects (2,218 km in total) at intervals of 6.43 km over the study area between 131°3′ and 134°59′ E. In total, 148 groups were detected by two observers. The average group size was 1.56 individuals. The effective strip half-width of each observer was estimated to be 107 m (coefficient of variation [CV] = 8.26%). Porpoise abundance was estimated at 7,572 individuals and the density was as low as 0.506 individuals/km2 (CV = 17.3%). The sea is among the Japanese waters with the lowest density in spite of its favorable topographical conditions. In the western stratum of the study area, where the estimated density was 1.31 individuals/km2, we observed a relatively regular distribution. In the central-eastern stratum, which had an estimated density of 0.208 individuals/km2, we confirmed a clumped distribution that was restricted to inshore waters or near islands. No individuals were observed in waters between 132°51′ and 133°11′E, and between 133°43′ and 133°59′E, where sand dredging and other human activities have been active, suggesting that habitat fragmentation has occurred.  相似文献   

13.
To examine the behavioral adjustment of a generalist marine top predator to variability of their prey, we studied the foraging behavior of Japanese cormorants (Phalacrocorax filamentosus) breeding at Teuri Island, Hokkaido, in years of contrasting demersal and epipelagic prey composition. We used radio telemetry and ship-based surveys to determine behavior and at-sea distribution during three summers (1996–1998). The cormorants fed on epipelagic anchovy (Engraulis japonicus) and sandlance (Ammodytes personatus) in 1998 (year of epipelagic diet), while they fed on benthic rock fish (Sebastes spp.) and flatfish (Pleuronectidae) and nearshore-living naked sandlance (Hypophychus dybowskii), as well as epibenthic greenling (Hexagrammidae) in 1996 and 1997 (year of demersal diet). Cormorants engaged in larger feeding groups, visited more feeding sites, and stayed at each feeding site for a shorter period in the year of epipelagic diet than in the years of demersal diet. The cormorants made long foraging trips and fed in the mainland coastal habitat, distant from the colony, in the years of demersal diet. Individual radio-tracked birds fed over the wide area between the islands and mainland, in the year of epipelagic diet, while most individuals specialized in mainland or island coastal habitats in the years of demersal diet. Behavioral adjustment of Japanese cormorants might allow them to exploit both unpredictable epipelagic and predictable benthic prey efficiently.Communicated by T. Ikeda, Hakodate  相似文献   

14.
Temporal variation in the diet and chick growth of rhinoceros auklets (Cerorhinca monocerata), on Teuri Island, Sea of Japan, was studied to understand how local marine environmental changes affect the reproduction of this piscivorous seabird. The food delivered by parents to chicks was sampled every 1-2 weeks from late May to July, 1994-1998. Overall, the diet of nestling rhinoceros auklets consisted of (by mass) 61% Japanese anchovy (Engraulis japonicus), 18% Japanese sand lance (Ammodytes personatus), 18% Japan Sea greenling (Pleurogrammus azonus), 2% other fish and 1% squid. Among years, the contribution of anchovy ranged from 16% to 93%. Once anchovy occurred in the diet, it dominated (80% on average) thereafter. Accordingly, when anchovy appeared in the diet early in the chick-rearing season (1994, 1998), the contribution of anchovy overall was large. The first appearance of anchovy in the diet of auklets late in the summer of 1997 was possibly related to negatively anomalous sea-surface temperature. Food loads composed of anchovy (34.0 g) were heavier than those of sand lance (22.5 g) and greenling (28.5 g). The energy density of anchovies also was higher: 6.3 kJ g-1 wet mass compared to 0+ greenling (4.78 kJ g-1) and 0+ sand lance (3.78 kJ g-1). Thus, a high proportion of anchovy in the diet resulted in high food load mass, high daily growth rates of chicks and high fledging success. This study highlighted the importance of the time of arrival of migratory high-lipid prey, which is influenced by local oceanographic conditions, to the reproductive performance of a piscivorous seabird.  相似文献   

15.
Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear.  相似文献   

16.
Tiger sharks are important predators in the seagrass ecosystem of Shark Bay, Australia. Although sharks appear to return to a long-term study site within the Eastern Gulf periodically, the extent of their long-term movements is not known. Five sharks fitted with satellite transmitters showed variable movement patterns. Three sharks remained within the Shark Bay region and another made a 500 km round-trip excursion to oceanic waters northwest of the bay. These four sharks showed relatively low displacement rates relative to sharks tracked over shorter time periods, suggesting that sharks move through large home ranges that include Shark Bay. Although no reliable position fixes were obtained for the fifth shark, we were able to use the timing of satellite uplinks and the position of the satellite to determine that it had moved at least 8,000 km to the coastal waters of southeast Africa in 99 days—the longest recorded movement by a tiger shark. This movement and previously documented trans-Atlantic movements suggest that tiger shark populations may mix across ocean basins and that tiger sharks are subject to anthropogenic effects at great distances from protected waters. Finally, our method for using single satellite uplinks may be useful in estimating movements for wide-ranging species that rarely provide high quality location estimates.  相似文献   

17.
Low densities of harbour porpoises in winter (November–March) and high densities in summer (April–October) were found in the Sound, connecting the Baltic Sea and Kattegat. Due to their high energy requirements, it is hypothesized that the density of harbour porpoises is related to local prey abundance. This was tested by examining the stomach content of 53 harbour porpoises collected between 1987 and 2010 in the Sound (high season, 34 porpoises; low season, 19 porpoises). A total of 1,442 individual fish specimens from thirteen species were identified. Twelve of these were present in the high–porpoise density season and seven in the low-density season. The distribution of occurrence and the distribution of number of fish species were different between seasons, indicating a shift in prey intake between seasons. Furthermore, during the high-density season, the mean and total prey weight per stomach as well as the prey species diversity was higher. However, no difference was found in the number of prey species between the two seasons, indicating a higher quality of prey in the high-density season. Atlantic cod was found to be the main prey species in terms of weight in the high-density season while Atlantic herring and Atlantic cod were equally important during the low-density season. Prey availability and predictability are suggested as the main drivers for harbour porpoise distribution, and this could be caused by the formation of frontal zones in spring in the northern part of the Sound, leading to prey concentrations in predictable areas.  相似文献   

18.
The inarticulated brachiopod, Lingula reevii Davidson (1880) is a filter-feeding invertebrate that burrows vertically in sandy or mixed sediments. Its only recorded occurrence is from Kaneohe Bay, Oahu, Hawaii, southern Japan, and Ambon, Indonesia. Past surveys of Kaneohe Bay populations suggested a distinct decrease in abundance following the diversion of sewage effluent from the bay in 1978/1979. In the summer of 2004 and 2007, visual surveys were conducted in areas of historical L. reevii abundance as well as in areas appearing to have suitable habitat. In 2004, approximately 2,950 m2 at 20 sites within the bay were surveyed using quantitative belt transecting methods. A maximum density of 4 Lingula/m2 was observed, a decrease from previous maximum estimates of 500 individuals/m2 (Worcester, Dissertation, Zoology Department, University of Hawai′i, pp 49, 1969) and 100 individuals/m2 (Emig, J Exp Mar Biol Ecol 52:47–61, 1981). When these 20 sites were revisited in 2007, many had fewer or no L. reevii; therefore, broader scale presence/absence surveys were conducted at 16 additional sites in the bay (also surveyed in 2004). The highest density of L. reevii found in 2007 was 0.94 individuals/m2. The continued decline in abundance of L. reevii in Kaneohe Bay may be due, in addition to decreased organic enrichment from diversion of sewage discharge almost 30 years ago, to the more recent reduction of suitable habitat by the invasion of mat-forming alien algae species.  相似文献   

19.
Atlantic bluefin tuna (Thunnus thynnus) are highly migratory predators whose abundance, distribution, and somatic condition have changed over the past decades. Prey community composition and abundance have also varied in several foraging grounds. To better understand underlying food webs and regional energy sources, we performed stomach content and stable isotope analyses on mainly juvenile (60–150 cm curved fork length) bluefin tuna captured in foraging grounds in the western (Mid-Atlantic Bight) and eastern (Bay of Biscay) Atlantic Ocean. In the Mid-Atlantic Bight, bluefin tuna diet was mainly sand lance (Ammodytes spp., 29% prey weight), consistent with historic findings. In the Bay of Biscay, krill (Meganyctiphanes norvegica) and anchovy (Engraulis encrasicolus) made up 39% prey weight, with relative consumption of each reflecting annual changes in prey abundance. Consumption of anchovies apparently declined after the local collapse of this prey resource. In both regions, stable isotope analysis results showed that juvenile bluefin tuna fed at a lower trophic position than indicated by stomach content analysis. In the Mid-Atlantic Bight, stable isotope analyses suggested that >30% of the diet was prey from lower trophic levels that composed <10% of the prey weights based upon traditional stomach content analyses. Trophic position was similar to juvenile fish sampled in the NW Atlantic but lower than juveniles sampled in the Mediterranean Sea in previous studies. Our findings indicate that juvenile bluefin tuna targeted a relatively small range of prey species and regional foraging patterns remained consistent over time in the Mid-Atlantic Bight but changed in relation to local prey availability in the Bay of Biscay.  相似文献   

20.
The energy of the body components and the energy costs of spawning and overwintering in the bay anchovy Anchoa mitchilli, the most abundant fish in Chesapeake Bay, were studied to determine seasonal variability during the different stages of its life cycle. Bimonthly samples were collected by trawl from April 1990 through October 1991. Fish condition and body energy levels fluctuated seasonally, and were related to anchovy size. Energy equivalents (cal g-1 dry wt) was highest in December, before the overwintering period. The somatic weight component increased by 32 to 33% and total body weight by 26% during the spawning season, indicating that feeding not only met energy requirements of daily spawning but also provided surplus energy for growth. The overwintering loss of energy was 33 to 35% of total body calories, and was primarily derived from deposit fat in somatic and visceral tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号