首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

2.
We surveyed patterns of allelic variation within twelve samples of the pipi Donax deltoides Lamarck from beaches separated by up to 1200 km but connected to varying degrees by the East Australian Current. We used these data to test the prediction that the irregular patterns of water movement would cause genetic differentiation in pipis, so that there would be more genetic variation within and among the more southern regions than the northern regions. We found that six loci were at least moderately variable within all samples, and there were no clear geographic patterns in allelic frequencies. In general, genotype frequencies within samples were consistent with predictions for an outcrossed, sexually reproducing species, and we detected no evidence of population subdivision. Within samples, with the exception of the peptidase loci, single-locus genotype frequencies were in close agreement with expectations for Hardy–Weinberg equilibrium. We observed no significant linkage disequilibrium for any pairwise comparison of loci in any sample. Our hierarchical analysis of genetic variation revealed little variation among all samples (F st = 0.009). Loci showed consistently low levels of subdivision (F st from 0.003 to 0.018). We found almost no variation among the four geographic regions sampled (F rt = 0.001). All variation was therefore attributable to variation among samples within regions (F sr = 0.010). These data imply that larvae are moving between regions and that levels of present or recent gene flow are high, and support the conclusions of other studies which have inferred widespread gene flow for animals dispersing via planktonic, outcrossed larvae in parts of this region. This implies that the East Australian Current is sufficient to produce strong larval connections despite its intermittent nature. If existing levels of population subdivision reflect current levels of gene flow, then these data imply that D. deltoides represents a single fishery on the east coast of Australia. Received: 16 September 1996 / Accepted: 25 September 1996  相似文献   

3.
Documenting the scale of movement among populations is an important challenge for marine ecology. Using nine microsatellite markers, evidence of genetic structure in a marine kelp, the sea palm Postelsia palmaeformis Ruprecht, was examined in the vicinity of Cape Flattery, Washington state, USA (48° 24′ N, 124°44′ W). Genetic clustering analysis implemented without reference to geographic structure strongly suggested that a number of distinct genetic clusters existed among the 245 plants sampled in August in the years 1997–2001. Subsequent analysis showed that clustering was associated with geographically defined populations both among (km scale) and within (m scale) sampling sites. F st analysis of geographically defined populations revealed significant genetic differentiation among populations of plants as little as 5 m apart, evidence of genetic structuring at even smaller scales, and a sharp increase in F st across populations separated by up to 23 m. F st values were also high and approximately unchanging (F st=0.470) for populations separated by greater distances (up to 11 km), consistent with a scenario of rare dispersal by detached, floating plants carried by variable currents. The results corroborate natural history observations suggesting that P. palmaeformis has extremely short (1–3 m) spore dispersal distances, and indicate that the dynamics of sea palm populations are more affected by local processes than recruitment from distant populations.  相似文献   

4.
 We examined population structure in the wreckfish, Polyprion americanus, by assaying six microsatellite loci in 422 individuals collected throughout the geographic range. Eighteen hapuku, P. oxygeneios, were assayed at the same loci for use as an outgroup. Expected heterozygosities ranged from 0.49 to 0.88 and averaged 0.66. Allele-frequency distributions at those loci indicated that samples from the eastern North Atlantic, western North Atlantic and the Mediterranean were genetically similar, confirming the pattern seen in a previous analysis of mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs). Both mtDNA and microsatellite studies differentiated northern and southern wreckfish stocks. However, in contrast to the mtDNA studies, allelic variation at microsatellite loci clearly differentiated wreckfish from two Southern Hemisphere locations, Brazil and the South Pacific. Far more genetic variation was observed at microsatellite loci than with mtDNA RFLPs (haplotype diversity averaged 0.01), and we saw more evidence of population structure with the microsatellite loci. The differentiation between southern and northern wreckfish supports the distribution records, which indicate that wreckfish do not occur in the tropics. Temperature profiles and current patterns throughout the southern oceans apparently also prevent significant gene flow between the South Pacific and Brazilian samples. Received: 29 January 2000 / Accepted: 27 June 2000  相似文献   

5.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

6.
We investigated the genetic diversity among populations of the shrimp Farfantepenaeus notialis, the most abundant penaeid species around Cuba. A total of 25 allozyme loci were analyzed in samples of shrimps from seven localities at the south central platform of the island (Ana María Gulf). Samples from three of these localities and from Batabanó Gulf and Guacanayabo Gulf at the south west and south east platforms of the island, respectively, were also characterized at the mtDNA level through sequence variation of a 2027 bp segment including part of the COI and COIII genes. Of the 25 allozyme loci studied 9 were polymorphic: Akp2, Akp3, AmyB, Est3, Gdh, GP7, and Per1, 2 and 3. In contrast to mtDNA, the pattern of allozyme variation among localities revealed strong population structuring at Ana María Gulf, with significant F st in all pairwise comparisons. The magnitude of F st estimates as well as the grouping pattern obtained by a UPGMA analysis based on a distance matrix indicated that the level of differentiation was concordant with the geographical position of the localities and the hydrographic regime. Homogeneity of mtDNA suggested that differentiation of allozyme loci might be due to more recent events rather than historical isolation of the sampled populations. Ana María and Guacanayabo Gulf populations were differentiated by mtDNA from Batabanó Gulf, at the southwestern end of the island. The analysis showed three restriction site differences among them, suggesting genetic isolation of the two regions. The present results also suggest that an artificial introduction of larvae from Tunas de Zaza into Batabanó Gulf, in an effort to repopulate this fishing region, may have been ineffective. Received: 13 December 1999 / Accepted: 2 October 2000  相似文献   

7.
The genetic population structure of red grouper, Epinephelus morio (Valenciennes), and scamp, Mycteroperca phenax Jordan and Swain, from the southeastern U.S. Atlantic coast and the Gulf of Mexico was examined using nuclear microsatellite DNA markers in order to test the null hypothesis of panmixia throughout this range. Physical and biological data indicate that relatively isolated populations of these fish exist. Genetic variation was assessed at four microsatellite loci in red grouper and six loci in scamp. The fish were collected on different dates between 1991 and 2001. The microsatellite loci were highly polymorphic, with an average expected heterozygosity of 0.75 in red grouper and 0.68 in scamp. Heterozygote deficiencies (significant deviations from Hardy–Weinberg equilibrium, HWE) were found at two of four loci in all red grouper samples except the eastern Gulf of Mexico, and for all red grouper combined. In contrast, all loci conformed to HWE in the separate scamp samples. Minimal genetic differences distinguished southeastern U.S. Atlantic or Mexican red grouper from other localities, and no indication of genetic differentiation was observed in scamp. This large-scale genetic homogeneity may be attributed to ongoing gene flow and/or historical contact between present-day populations. For management purposes, genetic homogeneity does not necessarily imply a single stock. Because larval dispersal may be sufficient to homogenize gene frequencies but not to replenish depleted stocks, other data must be considered in the management of these species.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by J.P. Grassle, New Brunswick  相似文献   

8.
The depletion of shallow-water fish stocks through overexploitation has led to increasing fishing pressure on deep-sea species. Poor knowledge of the biology of commercially valuable deep-water fish has led to the serial depletion of stocks of several species across the world. Data regarding the genetic structure of deep-sea fish populations is important in determining the impact of overfishing on the overall genetic variability of species and can be used to estimate the likelihood of recolonisation of damaged populations through immigration of individuals from distant localities. Here the genetic structure of the commercially fished deep-water species the blackspot sea bream, Pagellus bogaraveo is investigated in the northeastern Atlantic using partial DNA sequencing of mitochondrial cytochrome b (cyt-b) and D-loop regions and genotyping of microsatellite loci. An absence of variation in cyt-b and low genetic variation in D-loop sequences potentially indicate that P. bogaraveo may have undergone a severe bottleneck in the past. Similar bottlenecks have been detected in other Atlantic species of fish and have possibly originated from the last glaciation. P. bogaraveo may have been particularly vulnerable to the effects of low temperature and a fall in sea level because stages of its life history occur in shallow water and coastal sites. However, there are other explanations of low genetic variability in populations of P. bogaraveo, such as a low population size and the impacts of fishing on population structure. Analysis of population structure using both D-loop and microsatellite analysis indicates low to moderate, but significant, genetic differentiation between populations at a regional level. This study supports studies on other deep-sea fish species that indicate that hydrographic or topographic barriers prevent dispersal of adults and/or larvae between populations at regional and oceanographic scales. The implications for the management and conservation of deep-sea fish populations are discussed.Communicated by J.P. Thorpe, Port Erin  相似文献   

9.
10.
Planktonic populations of the calanoid copepod Labidocera aestiva show significant biochemical genetic heterogeneity along the Atlantic coast of the USA. In summer, 1981, copepods were collected by surface tows at Beaufort Inlet, North Carolina; Fort Pierce Inlet, Florida; and Vineyard Sound, Massachusetts. Genetic variation within each population and genetic differentiation among the three populations were studied by micro-acrylamide gel electrophoresis of six loci encoding four enzymes. All six enzyme loci were polymorphic when all populations were considered together, but the North Carolina population was monomorphic at two loci. High genetic variability was indicated by the following: (1) the number of alleles per locus averaged over all loci was 2.57±0.26 SD; (2) the average proportion of loci for which the frequency of the most common allele was not greater than 0.95 was 0.78±0.10; (3) the frequency of heterozygous individuals was 0.25±0.07. Genetic differentiation among population samples in the three regions was demonstrated in several ways: allele frequencies at one aminopeptidase-I locus, Lap-1, differed significantly among samples of the three populations, and there were unique alleles of high frequency at this locus in two population samples. Values of the statistic of genetic distance (D) averaged 0.20±0.08 for pairwise comparisons between all samples. Compared to expected heterozygosity if individuals across the entire range sampled mated at random, there were highly significant heterozygote deficiencies at five of the six loci. Genetic differentiation of populations of L. aestiva may result from (1) differential selection on populations in the three regions, or (2) restricted gene flow between the populations. Gene flow may be limited by geographic separation or differences in life history, such as seasonal presence in the plankton and diapause egg production.Contribution No. 5810 of Woods Hole Oceanographic Institution  相似文献   

11.
The spawning population of European eel (Anguilla anguilla L.) has been considered panmictic on the basis of genetic markers and morphometric studies. This hypothesis was tested by screening glass eel from five locations (Ireland, Italy, Morocco, Sweden and U.K.), belonging to two cohorts at the cytochrome b (cyt b) locus (392 bp) of the mitochondrion and at five nuclear microsatellite loci. Seventeen cyt b haplotypes were detected, of which ten were singletons; the most common haplotype occurred in 47% of all fish. Haplotype number increased significantly with latitude. Phylogeographical structure based on the cytoplasmic marker was weak (FST=0.014) and non-significant. Close similarity was revealed between British and Irish glass eel populations, and weak differentiation among the British/Irish, Atlantic Moroccan, Italian and Swedish Baltic populations, respectively. No hierarchical genetic structure was obvious. Levels of genetic variation detected with five microsatellites were much higher levels than found with allozymes in previous studies (mean number of alleles per locus=11.1; mean expected heterozygosity=0.68). Overall among-population microsatellite variance was low but significant (FST=0.004), and caused by the linked microsatellite loci Aan03 and Aan04. The Hardy-Weinberg-Castle equilibrium and the absence of gametic disequilibria at these loci in the Moroccan population might point to its genetic isolation, although the impact of just two out of five loci is puzzling. Given the weak differentiation typical for marine species and the limitations of our data, the results should be interpreted with caution. However, combined with recent evidence from a related study, the paradigm that the European eel constitutes a panmictic population becomes difficult to maintain.  相似文献   

12.
We measured within- and among-population genetic variation in the green sea urchin (Strongylocentrotus droebachiensis) at 11 sites in the north Atlantic and northeast Pacific by using four-locus microsatellite genotypes. We found no differentiation among populations from Atlantic Canada, but strong differentiation across the north Atlantic and between the Atlantic and Pacific samples. High inbreeding coefficients at three loci are consistent with high variance in reproductive success. One population that was recently decimated by disease was strongly differentiated from some others, but there was little differentiation otherwise among populations in Atlantic Canada. On a larger scale, populations in Atlantic Canada were more similar to a population from the north Pacific than to populations in the northwest Atlantic. Differentiation among populations at this large spatial scale is consistent with biogeographical hypotheses of: (1) Pleistocene population reduction and isolation in the northeast Atlantic, but (2) extinction in the northwest Atlantic followed by extensive recolonization from the Pacific. In contrast to other recent studies of trans-Atlantic organisms, we found no evidence of extensive gene flow across the north Atlantic.Communicated by R.J. Thompson, St. John's  相似文献   

13.
In a previous study on the kuruma shrimp Penaeus japonicus from the South China Sea, we detected high genetic divergence between two morphologically similar varieties (I and II) with distinct color banding patterns on the carapace, indicating the occurrence of cryptic species. In the present study, we clarify the geographical distribution of the two varieties in the western Pacific by investigating the genetic differentiation of the shrimp from ten localities. Two Mediterranean populations are also included for comparison. Based on the mitochondrial DNA sequence data, the shrimps are separated into two distinct clades representing the two varieties. Variety I comprises populations from Japan and China (including Taiwan), while variety II consists of populations from Southeast Asia (Vietnam, Singapore and the Philippines), Australia and the Mediterranean. Population differentiation is evident in variety II, as supported by restriction profiles of two mitochondrial markers and analysis of two microsatellite loci. The Australian population is genetically diverged from the others, whereas the Southeast Asian and Mediterranean populations show a close genetic relationship. Variety I does not occur in these three localities, while a small proportion of variety II is found along the northern coast of the South China Sea and Taiwan, which constitute the sympatric zone of the two varieties. The present study reveals high genetic diversity of P. japonicus. Further studies on the genetic structure of this species complex, particularly the populations in the Indian Ocean and Mediterranean, are needed not only to understand the evolutionary history of the shrimp, but also to improve the knowledge-based fishery management and aquaculture development programs of this important biological resource.  相似文献   

14.
Many species of marine fish are typified by large population sizes, strong migratory behavior, high fecundity, and pelagic eggs and larvae that are passively transported by ocean currents, all features that tend to increase gene flow, and hence reduce genetic partitioning, among localized populations. The plaice, Pleuronectes platessa, is a commercially important demersal species that exhibits all of these characteristics. We analyzed genetic variation at eight microsatellite loci in samples of spawning adults (N = 348) from the coasts of Ireland, Iceland, and, for the first time, from the Baltic Sea. Significant differentiation was observed between Iceland and Irish and Baltic Sea samples. However, there were no genetic differences between Irish and Baltic Sea samples, which contrast with the significant differentiation reported between Baltic Sea and North Sea/Atlantic populations of other flatfish species. To increase the data set, we carried out a cross-calibration exercise, allowing us to perform a joint analysis of data with an earlier study on adult and juvenile plaice (N = 480) collected over a broad geographic range, using six microsatellite loci in common to the two studies. Significant differentiation was observed between fish collected at the northern (Iceland, Faeroes, Norway) and southern (Bay of Biscay) parts of the species range. In contrast, the results showed little evidence of genetic structuring over much of the continental shelf of Europe. We believe that bathymetric and hydrographic barriers are the major factors shaping genetic structure, while lack of structure over much of the European continental shelf may be explained by a combination of past historical events, population structure, and dynamics of the species.  相似文献   

15.
The genetic structure of the flounders Platichthys flesus L. and P. stellatus Pallas was investigated on different spatial scales through analysis of allozyme variation at 7 to 24 polymorphic loci in samples collected from different regions (Baltic Sea, North Sea, Brittany, Portugal, western Mediterranean, Adriatic Sea, Aegean Sea and Japan) in 1984 to 1987. No geographic variation was evident within a region. Some pattern of differentiation by distance was inferred within the Atlantic, while the Mediterranean comprised three geographically isolated populations and was itself geographically isolated from the Atlantic (fixed allele differences at up to three loci were found among P. flesus populations from the Atlantic, the western Mediterranean, the Adriatic Sea, the Aegean Sea and also P. stellatus from the coast of Japan). Sea temperature during the reproductive period probably acts as a barrier to gene flow between populations. Genetic distances among European flounder populations (P. flesus) were higher than, or of the same magnitude as, the genetic distance between Pacific (P. stellatus) and European flounder populations, suggesting that P. flesus is paraphyletic and/or there is no phylogenetic basis to recognising P. stellatus as a different species. The divergence between P. flesus and P. stellatus was thus inferred to be more recent than the divergence between the present P. flesus populations from the NE Atlantic and eastern Mediterranean. The eastern Mediterranean populations are thought to originate from the colonisation of the Mediterranean by a proto-P. flesus/P. stellatus ancestor, whereas the present western Mediterranean population has undergone a more recent colonisation event by P. flesus. Patterns of mitochondrial DNA variation, established on a smaller array of P. flesus samples, were in accordance with the geographic patterns inferred from the allozyme survey. In addition, they supported the hypothesis of a two-step colonisation of the western Mediterranean. These results contribute to our understanding of the biogeography of the Mediterranean marine fauna, especially the group of boreal remnants to which P. flesus belongs. Received: 7 February 1997 / Accepted: 26 March 1997  相似文献   

16.
P. M. Stevens 《Marine Biology》1991,108(3):403-410
Seven populations of the pea crabPinnotheres atrinicola Page were sampled from around the North Island of New Zealand from February to October 1987, and individuals were scored at 23 presumptive enzymatic loci. For a brachyuran crab,P. atrinicola revealed high levels of polymorphism and heterozygosity. Of the loci scored, phosphoglucose isomerase (Gpi) and phosphoglucomutase (Pgm) were distinguished by high variability ( =0.602 and 0.526, respectively). A clinal variation in electromorph frequency was evident at several loci, and atGpi in particular. Statistical analyses revealed that, despite relatively small genetic distance separation, a high degree of structuring was present between the geographic populations. The degree of population subdivision observed in this study is atypical of brachyuran crabs. It is suggested that the genetic differentiation observed between pea crab populations is maintained by life-history attributes and current movements which restrict gene flow between populations and, to some extent, by random genetic drift.Publication No. 41 from the Evolutionary Genetics Laboratory, University of Auckland  相似文献   

17.
Geographic variation in vocalizations is widespread in passerine birds, but its origins and maintenance remain unclear. In this study, we test the hypothesis that song dialect, a culturally transmitted trait, is related to the population genetic structure of the orange-tufted sunbird, Nectarinia osea. To address this, we compared mitochondrial DNA (mtDNA) sequence variation together with allele frequencies at five microsatellite loci from an urban population of sunbirds exhibiting two distinct song dialects on a microgeographic scale. Our findings reveal no association between dialect membership and genetic composition. All genetic measures, from both mitochondrial and nuclear DNA, indicate high levels of gene flow between both dialect populations. The low F ST values obtained from mtDNA and microsatellite analysis imply that the variation among dialects does not account for more than 2%, at best, of the overall genetic variation found in the entire population. These measures fall well within the range of similar measures obtained in other studies of species exhibiting vocal dialects, most of which fail to detect any dialect-based genetic differentiation. The persistence of dialects in the orange-tufted sunbird may thus best be explained by dispersal of individuals across dialect boundaries and possibly from surrounding areas, followed by postdispersal vocal matching. Because genetic structuring appears weaker than cultural structure in this species, we discuss the behavioral mechanisms underlying dialect maintenance in the presence of apparent gene flow.  相似文献   

18.
Despite their ubiquity and importance to intertidal ecosystems, information is currently lacking regarding the genetic diversity of trematode parasites within coastal organisms and the distribution of their genetic variation among intertidal habitats. In this study, we quantified the clonal diversity of the coastal marine trematode Maritrema novaezealandensis within Zeacumantus subcarinatus snail hosts from three coastal bays in Otago Harbour, New Zealand, using five microsatellite loci to determine if differences exist in the frequency of occurrence of multi-clone infections. In addition, we examined gene flow among M. novaezealandensis collected from the three bays. The frequency of mixed-clone infections varied fourfold among bays and no genetic differentiation was detected among intertidal bays. Across the coastal bays studied, M. novaezealandensis comprises a single population that is potentially infecting multiple Z. subcarinatus populations with varying life history traits.  相似文献   

19.
The existence of three distinct populations is widely accepted for the finless porpoise (Neophocaena phocaenoides) in Chinese waters: the Yellow Sea, Yangtze River, and South China Sea populations. Here, we use nine species-specific microsatellite loci, the complete mitochondrial DNA control region (912 bp), and the complete mitochondrial cytochrome b gene (1,140 bp) to further investigate potential population stratification in the Yellow Sea using 147 finless porpoise samples from the Bohai Sea and adjacent northern Yellow Sea, two regions that were largely underrepresented in previous genetic studies. Our F-statistics analyses confirm the previously described three populations, but further demonstrate significant genetic differentiation between the [Bohai + northern Yellow] Sea and the southern Yellow Sea. On the other hand, median-joining network analyses do not exhibit well-differentiated haplotype groups among different geographic populations, suggesting the existence of shared ancestral haplotypes. Levels of microsatellite diversity are moderate to high (mean H E = 0.794) among the 147 [Bohai + northern Yellow] Sea finless porpoises and no recent bottleneck was detected, whereas mtDNA control region and cytochrome b gene diversity is low to moderate. The microsatellite genotypic and mtDNA haplotypic data also confirm the presence of mother-calf pairs in single-net bycatch cases. The results presented here highlight the necessity to treat the [Bohai + northern Yellow] Sea population (highly impacted by anthropogenic threats) as a separate Management Unit.  相似文献   

20.
B. Lavie  R. Noy  E. Nevo 《Marine Biology》1987,96(3):367-370
Allozymic variation encoded by 15 gene loci was compared and contrasted in naturally coexisting populations of two marine gastropods (Patella coerulea and Patella aspera) collected along the rocky beaches of the Mediterranean sea of Israel in June, 1979. The genetic variability did not differ consistently or significantly between the two species, but in all the populations studied, P. aspera was more heterozygous than P. coerulea. These results are discussed in terms of the potential ecological factors affecting this genetic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号