首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The injection of CO2 at the Ketzin storage site and the chemical detection of its arrival in the observation well allowed testing of different numerical simulation codes. ECLIPSE 100 (E100, black-oil simulator), ECLIPSE 300 (E300, compositional CO2STORE) and MUFTE-UG were used for predictive modelling applying a constant injection rate of 1 kg s?1 CO2 and for a history match applying the actual variable injection rate which ranged from 0 to 0.7 kg s?1 and averaged 0.23 kg s?1. The geological model applied, is based on all available geophysical and geological information and has been the same for all programs.The results of the constant injection regime show a good agreement among the programs with a discrepancy of 21–33% for the CO2 arrival times. However, it is determined from the comparison of the cumulative mass of CO2 at the time of CO2 arrival that the injection regime is an important factor for the accurate prediction of CO2 migration within a saline aquifer. Comparing the actual variable injection regime with the simulations applying a constant injection rate the results are relatively inaccurate.Regarding the actual variable injection regime, which was evaluated using all three simulators, the computational results show a good agreement with the data actually measured at the first observation well. Here, the calculated arrival times exceeded the actual ones by 8.1% (E100), 9.2% (E300) and 17.7% (MUFTE-UG).It can be concluded that irrespective of the deviations of the simulations, due to combinations of different codes and slight differences in input parameters, all three programs are well equipped to give a reliable estimate of the arrival of CO2. Deviations in the results mainly occur due to different input data and grid size choices done by the different modelling teams working independently of each other. Deviations of the simulations results compared to the actual CO2 arrival time result from uncertainties in the implementation of the geological model, which was set up based on well log data and analogue studies.  相似文献   

2.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   

3.
The feasibility of monitoring CO2 migration in a saline aquifer at a depth of about 650 m with cross-hole and surface–downhole electrical resistivity tomography (ERT) is investigated at the CO2SINK test site close to Ketzin (Germany). The permanent vertical electrical resistivity array (VERA) consists of 45 electrodes (15 in the injection well Ktzi201 and 15 in each of the two observation wells Ktzi200 and Ktzi202), successfully placed on the electrically insulated casings, in the depth range of about 590–740 m with a spacing of about 10 m. The three Ketzin wells are arranged as perpendicular triangle with distances of 50 and 100 m.First synthetic modelling studies indicate an increase of the electrical resistivity of about 200% caused by CO2 injection, corresponding to a bulk CO2 saturation of 50%, which is in good agreement with laboratory studies. Finite difference inversion of field data delivers three-dimensional resistivity distributions between the wells which are consistent with the reservoir modelling studies.To increase the limited observation area provided by the cross-hole measurements, additional surface–downhole measurements were deployed. A main CO2 migration in SE–NW direction is deduced from surface to downhole resistivity experiments.The first cross-hole time-lapse results show that the resolution and the coverage of the electrode array in the Ketzin setting are sufficient to resolve the expected resistivity changes on the characteristic length scale of the electrode array. Significant resistivity changes could be measured, however, detailed information on the CO2 plume could not be resolved yet by VERA under the existing geological circumstances.  相似文献   

4.
Using a combination of experimental (petrophysical and mineralogical) methods, the effects of high-pressure CO2 exposure on fluid transport properties and mineralogical composition of two pelitic caprocks, a limestone and a clay-rich marl lithotype have been studied. Single and multiphase permeability tests, gas breakthrough and diffusion experiments were conducted under in situ p/T conditions on cylindrical plugs (28.5 mm diameter, 10–20 mm thickness).The capillary CO2 sealing efficiency of the initially water-saturated sample plugs was found to decrease in repetitive gas breakthrough experiments on the same sample from 0.74 to 0.41 MPa for the limestone and from 0.64 to 0.43 MPa for the marl. Helium breakthrough experiments before and after the CO2 tests showed a decrease in capillary threshold (snap-off) pressure from 1.81 to 0.62 MPa for the limestone.Repetitive CO2 diffusion experiments on the marlstone revealed an increase in the effective diffusion coefficient from 7.8 × 10?11 to 1.2 × 10?10 m2.Single-phase (water) permeability coefficients derived from steady-state permeability tests ranged between 7 and 56 nano-Darcy and showed a consistent increase after each CO2 test cycle. Effective gas permeabilities were generally one order of magnitude lower than water permeabilities and exhibit the same trend. XRD measurements performed before and after exposure to CO2 did not reveal any distinct change in the mineral composition for both samples. Similarly, no significant changes were observed in specific surface areas (determined by BET) and pore-size distributions (determined by mercury injection porosimetry). High-pressure CO2 sorption experiments on powdered samples revealed significant CO2 sorption capacities of 0.27 and 0.14 mmol/g for the marlstone and the limestone, respectively.The changes in transport parameters in the absence of detectable mineral alterations may be explained by carbonate dissolution and further precipitation along a pH profile across the sample plug which would not be subject to quantitative mineral alteration.  相似文献   

5.
Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself. This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10?18 m2). Vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. Overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water.  相似文献   

6.
In Salah Gas Project in Algeria has been injecting 0.5–1 million tonnes CO2 per year over the past 5 years into a water-filled strata at a depth of about 1800–1900 m. Unlike most CO2 storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO2 flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1–1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modeling to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO2 injection operation in relatively low-permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO2 injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicate that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20-m-thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100-m-thick zone of shaly sands immediately above the injection zone.  相似文献   

7.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

8.
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 μGal for 2003 and 3.5 μGal for 2005. The resulting time-lapse uncertainty is 5.3 μGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530 kg/m3. Uncertainty in determining the average density is estimated to be ±65 kg/m3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.  相似文献   

9.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

10.
Idealized, basin-scale sharp-interface models of CO2 injection were constructed for the Illinois basin. Porosity and permeability were decreased with depth within the Mount Simon Formation. Eau Claire confining unit porosity and permeability were kept fixed. We used 726 injection wells located near 42 power plants to deliver 80 million metric tons of CO2/year. After 100 years of continuous injection, deviatoric fluid pressures varied between 5.6 and 18 MPa across central and southern part of the Illinois basin. Maximum deviatoric pressure reached about 50% of lithostatic levels to the south. The pressure disturbance (>0.03 MPa) propagated 10–25 km away from the injection wells resulting in significant well–well pressure interference. These findings are consistent with single-phase analytical solutions of injection. The radial footprint of the CO2 plume at each well was only 0.5–2 km after 100 years of injection. Net lateral brine displacement was insignificant due to increasing radial distance from injection well and leakage across the Eau Claire confining unit. On geologic time scales CO2 would migrate northward at a rate of about 6 m/1000 years. Because of paleo-seismic events in this region (M5.5–M7.5), care should be taken to avoid high pore pressures in the southern Illinois basin.  相似文献   

11.
Two sets of experiments on typical Class G well cement were carried out in the laboratory to understand better the potential processes involved in well leakage in the presence of CO2. In the first set, good-quality cement samples of permeability in the order of 0.1 μD (10?19 m2) were subjected to 90 days of flow through with CO2-saturated brine at conditions of pressure, temperature and water salinity characteristic of a typical geological sequestration zone. Cement permeability dropped rapidly at the beginning of the experiment and remained almost constant thereafter, most likely mainly as a result of CO2 exsolution from the saturated brine due to the pressure drop along the flow path which led to multi-phase flow, relative-permeability effects and the observed reduction in permeability. These processes are identical to those which would occur in the field as well if the cement sheath in the wellbore annulus is of good quality. The second set of experiments, carried out also at in situ conditions and using ethane rather than CO2 to eliminate any possible geochemical effects, assessed the effect of annular spaces between wellbore casing and cement, and of radial cracks in cement on the effective permeability of the casing-cement assemblage. The results show that, if both the cement and the bond are of good quality, the effective permeability of the assemblage is extremely low (in the order of 1 nD, or 10?21 m2). The presence of an annular gap and/or cracks in the order of 0.01–0.3 mm in aperture leads to a significant increase in effective permeability, which reaches values in the range of 0.1–1 mD (10?15 m2). The results of both sets of experiments suggest that good cement and good bonding with casing and the surrounding rock will likely constitute a good and reliable barrier to the upward flow of CO2 and/or CO2-saturated brine. The presence of mechanical defects such as gaps in bonding between the casing or the formation, or cracks in the cement annulus itself, leads to flow paths with significant effective permeability. This indicates that the external and internal interfaces of cements in wells would most probably constitute the main flow pathways for fluids leakage in wellbores, including both gaseous/supercritical phase CO2 and CO2-saturated brine.  相似文献   

12.
A method, based on spatial analysis of the different criteria to be taken into consideration for building scenarios of CO2 capture and storage (CCS), has been developed and applied to real case studies in the Hebei province. Totally 88 point sources (42 from power sector, 9 from iron and steel, 18 from cement, 16 from ammonia, and 3 from oil refinery) are estimated and their total emission amounts to 231.7 MtCO2/year with power, iron and steel, cement, ammonia and oil refinery sharing 59.13%, 25.03%, 11.44%, 3.5%, and 0.91%, respectively. Storage opportunities can be found in Hebei province, characterised by a strong tectonic subsidence during the Tertiary, with several kilometres of accumulated clastic sediments. Carbon storage potential for 25 hydrocarbon fields selected from the Huabei complex is estimated as 215 MtCO2 with optimistic assumption that all recovered hydrocarbon could be replaced by an equivalent volume of CO2 at reservoir conditions. Storage potential for aquifers in the Miocene Guantao formation is estimated as 747 MtCO2 if closed aquifer assumed or 371 MtCO2 if open aquifer and single highly permeable horizon assumed. Due to poor knowledge on deep hydrogeology and to pressure increase in aquifer, injecting very high rates requested by the major CO2 sources (>10 MtCO2/year) is the main challenge, therefore piezometry and discharge must be carefully controlled. A source sink matching model using ArcGIS software is designed to find the least-cost pathway and to estimate transport route and cost accounting for the additional costs of pipeline construction due to landform and land use. Source sink matching results show that only 15–25% of the emissions estimated for the 88 sources can be sequestrated into the hydrocarbon fields and the aquifers if assuming sinks should be able to accommodate at least 15 years of the emissions of a given source.  相似文献   

13.
The behavior of natural carbon dioxide (CO2) droplets (8–10 mm in diameter) were observed in a seafloor hydrothermal system at the Okinawa Trough. The natural CO2 droplet contain 95–98% of CO2, 2–3% of H2S, and other gas species. The ascending CO2 droplets were tracked by a remotely operated vehicle (ROV), and depth, temperature, salinity, pH and partial pressure of CO2 (pCO2) in seawater near the CO2 droplets were measured during droplet ascent by a conductivity-temperature-depth sensor (CTD) and in situ pH/pCO2 sensor. The visual images of the rising CO2 droplets were recorded with a high definition television camera on the ROV. A mapping survey (400 m × 400 m; 4 horizontal layers) revealed a dominant distribution of low pH area over the natural CO2 venting site. The size and rise rate of CO2 droplets decreased during their ascent in the water column from depths of 1424 to 679 m (a tracking interval of 745 m). The CO2 droplets dissolved gradually to become small flakes of CO2 hydrate while rising, and these ascending flakes were found to disappear at 679 m depth. Although a pH as low as 5 was detected just above the liquid CO2 venting site on the seafloor, no detectable pH depression in the water column ambient to the rising CO2 droplets was observed. The results of the pH mapping survey showed only localized pH depression over the CO2 venting site.  相似文献   

14.
Mathematical tools are needed to screen out sites where Joule–Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s?1 (0.1 MT yr?1) into moderately warm (>40 °C) and permeable formations (>10?14 m2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).  相似文献   

15.
Methodology is presented for a first-order regional-scale estimation of CO2 storage capacity in coals under sub-critical conditions, which is subsequently applied to Cretaceous-Tertiary coal beds in Alberta, Canada. Regions suitable for CO2 storage have been defined on the basis of groundwater depth and CO2 phase at in situ conditions. The theoretical CO2 storage capacity was estimated on the basis of CO2 adsorption isotherms measured on coal samples, and it varies between ∼20 kt CO2/km2 and 1260 kt CO2/km2, for a total of approximately 20 Gt CO2. This represents the theoretical storage capacity limit that would be attained if there would be no other gases present in the coals or they would be 100% replaced by CO2, and if all the coals will be accessed by CO2. A recovery factor of less than 100% and a completion factor less than 50% reduce the theoretical storage capacity to an effective storage capacity of only 6.4 Gt CO2. Not all the effective CO2 storage capacity will be utilized because it is uneconomic to build the necessary infrastructure for areas with low storage capacity per unit surface. Assuming that the economic threshold to develop the necessary infrastructure is 200 kt CO2/km2, then the CO2 storage capacity in coal beds in Alberta is greatly reduced further to a practical capacity of only ∼800 Mt CO2.  相似文献   

16.
The onshore CO2-storage site Ketzin consists of one CO2-injection well and two observation wells. Hydraulic tests revealed permeabilities between 50 and 100 mD for the sandstone rock units. The designated injection well Ktzi 201 showed similar production permeability. After installation of the CO2-injection string, an injection test with water yielded a significantly lower injectivity of 0.002 m3/d kPa, while the observation wells showed an injection permeability in the same range as the productivity. Several possible reasons for the severe decline in injectivity are discussed. Acidification of the reservoir interval, injection at high wellhead pressure, controlled mini-fractures and back-production of the well are discussed to remove the plugging material to re-establish the required injectivity of the well. It has been decided to perform a nitrogen lift and analyse the back-produced fluids. Initially during the lift, the back-produced fluids were dark-black. Chemical and XRD analyses proved that the black solids consisted mainly of iron sulphide. Sulphate-reducing bacteria (SRB) were detected in fluid samples with up to 106 cells/ml by fluorescent in situ hybridisation (FISH) indicating that the formation of iron sulphide was caused by bacterial activity. Organic compounds within the drilling mud and other technical fluids were likely left during the well completion process, thus providing the energy source for strong proliferation of bacteria. During the lift, the fraction of SRB in the whole bacterial community decreased from approximately 32% in downhole samples to less than 5%. The lift of Ktzi 201 succeeded in the full restoration of the well productivity and injectivity. Additionally, the likely energy source of the SRB was largely removed by the lifting, thus ensuring the long-term preservation of the injectivity.  相似文献   

17.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

18.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

19.
CO2 injection into a depleted hydrocarbon field or aquifer may give rise to a variety of coupled physical and chemical processes. During CO2 injection, the increase in pore pressure can induce reservoir expansion. As a result the in situ stress field may change in and around the reservoir. The geomechanical behaviour induced by oil production followed by CO2 injections into an oil field reservoir in the Paris Basin has been numerically modelled. This paper deals with an evaluation of the induced deformations and in situ stress changes, and their potential effects on faults, using a 3D geomechanical model. The geomechanical analysis of the reservoir–caprock system was carried out as a feasibility study using pressure information in a “one way” coupling, where pressures issued from reservoir simulations were integrated as input for a geomechanical model. The results show that under specific assumptions the mechanical effects of CO2 injection do not affect the mechanical stability of the reservoir–caprock system. The ground vertical movement at the surface ranges from ?2 mm during oil production to +2.5 mm during CO2 injection. Furthermore, the changes in in situ stresses predicted under specific assumptions by geomechanical modelling are not significant enough to jeopardize the mechanical stability of the reservoir and caprock. The stress changes issued from the 3D geomechanical modelling are also combined with a Mohr–Coulomb analysis to determine the fault slip tendency. By integrating the stress changes issued from the geomechanical modelling into the fault stability analysis, the critical pore pressure for fault reactivation is higher than calculated for the fault stability analysis considering constant horizontal stresses.  相似文献   

20.
Deep saline aquifers have large capacity for geological CO2 storage, but are generally not as well characterized as petroleum reservoirs. We here aim at quantifying effects of uncertain hydraulic parameters and uncertain stratigraphy on CO2 injectivity and migration, and provide a first feasibility study of pilot-scale CO2 injection into a multilayered saline aquifer system in southwest Scania, Sweden. Four main scenarios are developed, corresponding to different possible interpretations of available site data. Simulation results show that, on the one hand, stratigraphic uncertainty (presence/absence of a thin mudstone/claystone layer above the target storage formation) leads to large differences in predicted CO2 storage in the target formation at the end of the test (ranging between 11% and 98% of injected CO2 remaining), whereas other parameter uncertainty (in formation and cap rock permeabilities) has small impact. On the other hand, the latter has large impact on predicted injectivity, on which stratigraphic uncertainty has small impact. Salt precipitation at the border of the target storage formation affects CO2 injectivity for all considered scenarios and injection rates. At low injection rates, salt is deposited also within the formation, considerably reducing its availability for CO2 storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号