首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Winter and summer zooplankton maxima were observed on both near-reef and offshore sampling sites in the northern part of the Gulf of Aqaba, with summer maxima smaller than those of winter and more characterized by larval forms. Near-reef zooplankton biomass was generally several times greater than that observed 2 km offshore. During 1987, a near-reef maximum of 155 ind. or 12.2 g wet biomass m–3 was observed in March, while 103 ind. or 8.5 g wet biomass m–3 was observed in July. In the same year, 2 km offshore a maximum of 53 ind. or 2.5 g wet biomass m–3 was observed in February, while a maximum of 33 ind. or 0.5 g wet biomass m–3 was noted in July. The following year, 1988, the near-reef zooplankton abundances were little changed, but offshore zooplankton abundances were much higher (317 m–3). During 1987, the dominant winter (March) forms near the reef were gammarid amphipods, at maximum concentrations of 100 ind. m–3, where the summer (July) maximum was composed primarily of mysids (34 m–3), gammarid amphipods (30 m–3), and fish eggs (24 m–3). The offshore winter zooplankton fauna was characterized by copepods and appendicularians, each at a maximum concentrations of ca 13 ind. m–3, while the summer maximum was dominated by brachyuran zoea (31 m–3). Though the 1988, winter near-reef zooplankton community compositions were similar to those of 1987, the offshore zooplankton fauna was dominated by ostracods, which were relatively rare in previous years. Preliminary data suggests that holoplanktonic forms like chaetognaths, copepods and appendicularians, at an offshore site exhibit different patterns of vertical migration than those near the reef. This different behavior may result from different species compositions of these taxa or from high concentrations of pseudoplanktonic bentho-neritic peracarid crustaceans.Please address correspondence and reprint requests to T. Echelman, Marine Science Research Center, State University of New York, Stony Brook, New York 11794-5000, USA  相似文献   

2.
During two expeditions of the R.V. Polarstern to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: –22°C, maximum brine salinity: 223, brine volume: 5%) and more moderate conditions in summer (minimum ice temperature: –5.6°C, maximum brine salinity: 94, most brine volumes: 5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a l–1, while chl a concentrations of up to 67.4 µmol l–1 were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms m–2 in summer and between 3.7 and 24.8×103 organisms m–2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

4.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

5.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

6.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

7.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

8.
T. Næss 《Marine Biology》1991,110(2):261-266
Abundance and distribution of calanoid resting eggs in sediment were examined in 1988–1989 in an enclosed marine basin (Svartatjønn; western Norway). The basin undergoes rotenone treatment and draining every winter. Egg densities were highest in autumn, when up to 2 × 106 eggs m–2 were found, and lowest in summer. Egg densities were also highest in the deeper parts of the basin and in the upper 1 cm of sediment. Hatching was initiated in late January by pumping warmer deep water from the outside area into the basin. Evidence is given for resting-egg formation inEurytemora affinis Poppe, 1880 andAcartia clausi Gurney, 1931 (present phenotype reclassified asA. teclae by Bradford 1976: N. Z. Jl mar. Freshwat. Res. 10: 159–202). Seasonal differences in inhibition of hatching, together with the longevity and tolerance of these eggs, strongly suggest that they are diapause eggs.  相似文献   

9.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
Eucalanus inermis is an abundant species in the eastern tropical and subtropical South Pacific, including the oceanic and coastal waters off Chile and Peru. Its annual life cycle was studied through a time-series sampling (weekly intervals) during 2002, at a fixed coastal station at an upwelling site (Mejillones Bay, 23°S) off northern Chile. The more-or-less continuous occurrence and abundance of naupliar and copepodid stages indicated that the species reproduces during most of the year, with two peaks: one during the austral spring and the other during the summer. Thereafter, an abrupt decline in the population was observed during winter. The abundances of E. inermis copepodids and nauplii were positively correlated with sea surface temperature, suggesting temperature-dependent development and growth during the spring–summer period. Three cohorts could be distinguished during one annual cycle, with generation times >30 days. The estimate of mean weight-specific daily growth (0.12 day–1) is lower than that of other species in the area, but it is consistent with a slower development rate. The distribution of this copepod is associated with the equatorial subsurface waters characterized by low-oxygen content (<0.5 ml l–1). The ascent of this water mass to the near-surface during coastal upwelling in the spring–summer period and the presence of E. inermis adults favor their reproduction and the development of cohorts in the food-rich upwelling environment. The wintertime disappearance of E. inermis from shallow waters is, thus, interpreted as a movement to deep waters (>200 m depth), probably in a lethargic mode, within the oxygen minimum zone in the adjacent oceanic area.Communicated by P.W. Sammarco, Chauvin  相似文献   

11.
Zooplankton biomass in the ice-covered Weddell Sea,Antarctica   总被引:5,自引:0,他引:5  
Zooplankton was sampled by a Rectangular Midwater Trawl (RMT 1 + 8) in Weddell Sea surface waters (0 to 300 m) between 66 and 78°S during austral summer (February – March 1983). Sixty-nine taxa including different developmental stages were considered and divided into 16 size classes between <1 and >39.5 mm length. Biomass was determined by taxon and size class for three different meso- and macroplankton communities in the oceanic region, on the northeastern shelf and on the southern shelf of the Weddell Sea. The highest biomass of 11.2 mg DW m–3 (3.4 g DW m–2) was found in the northeastern shelf community (70 to 74°S), where juvenile and adultEuphausia crystallorophias accounted for 3.7 mg DW m–3 (1.1 g DW m–2). Although not quantitatively sampled, early copepodite stages (CI to CIII) ofCalanoides acutus andCalanus propinquus ranked second with 2.7 mg DW m–3 (0.8 g DW m–2). Biomass in the northeastern shelf community was concentrated in the size ranges 1 to 4 mm and 19.5 to 39.5 mm. The oceanic community of the central Weddell Sea was dominated by copepods smaller than 5 mm, which made up half of the total oceanic biomass. The tunicateSalpa thompsoni (7.0 to 8.5 mm) was the dominant single species with 1.6 mg DW m–3 (0.5 g DW m–2). Euphausiids, mainly juvenile and adult krillEuphausia superba, comprised 1.2 mg DW m–3 (0.4 g DW m–2). Total standing stock in the oceanic community was 9.4 mg DWm–3 (2.8 g DW m–2). Lowest biomass values were found in the southern shelf community (south of 75°S) with 4.0 mg DW m–3 (1.2 g DW m–2), concentrated in the 1 to 4 mm and 14.5 to 34.5 mm size classes. Abundant species were the pteropodLimacina helicina (1 to 2 mm; 0.7 mg DW m–3; 0.2 g DW m–2) andE. crystallorophias (24.5 to 39.5 mm; 0.9 mg DW m–3; 0.3 g DW m–2). The data reveal that it is essential to distinguish among subsystems in the Southern Ocean. This leads to a better understanding of the structure and function of those pelagic food webs which represent alternatives to the paradigmatic krill-centered system.  相似文献   

12.
Heterocapsa triquetra (Ehrenberg) Stein is a phototrophic marine dinoflagellate with wide coastal distribution. It is known to be capable of mixotrophy and diel vertical migration. The species was particularly abundant in the Gulf of Finland (the Baltic Sea) during the summers of 1996 and 1998, leading to discolouration of water on the south-west coast of Finland. Large-scale (50 m3) coastal mesocosm experiments in the north-west Gulf of Finland (the Baltic Sea) in the summers of 1996 and 1998 with daily mineral nutrient additions provoked a biomass increase of phytoplankton dominated by H. triquetra. From the first days of the experiment temporary cysts of H. triquetra were found in the bottom sediment water of the mesocosms. Maximum temporary cyst production rates reached values up to 20×106 cysts m–2 day–1, accounting for <1% of the depth-integrated motile population size. The environmental features favouring temporary cyst production remain uncertain; zooplankton grazing and nutrient stress are potential factors. Temporary cysts of H. triquetra were observed in a unialgal culture (f/2 medium) isolated in summer 1999 from Eel Pond (Woods Hole, Mass., USA).Communicated by M. Kühl, Helsingør  相似文献   

13.
Seasonal changes in abundance and development of Calanus pacificus Brodsky were investigated by analyzing samples of different depth strata (0–150 m and 0–1000 m) collected monthly in the Oyashio–Kuroshio Mixed Region. Copepodite stage 5 (C5) emerged from dormancy and matured in early summer. A new generation appeared in July and developed into C5 during summer to autumn. Some of the summer generation arrested development at C5 and persisted below 150 m depth until the following early summer. Although the remainder matured and reproduced in October, a new generation was not observed at the surface during winter. These results suggest that C. pacificus shows two different life-cycle patterns, i.e. one generation annually, with overwintering C5 in deep waters, and two generations annually, with surface development during autumn to winter. The complex life-cycle patterns may be an adaptation to the highly fluctuating surface environment in the Oyashio–Kuroshio Mixed Region.Communicated by T. Ikeda, Hakodate  相似文献   

14.
The prothrombin time of the normal human pooled plasma was shortened by Aldrich humic acid well water humic substances and lignin at final concentrations ranging from 5 × 10–3 mg mL–1 to 5 × 10–2 mg mL–1, with a maxmum effect at 1 × 10–2 mg mL–1. At this concentration the shortening was 5.5 s, 4.4 s, and 3.5 s by Aldrich humic acid, well water humic substances and lignin respectively. However, monomeric components of humic acid such as syringic acid, protocatechuic acid, pyrogallol, vanillic acid, gallic acid, resorcinol, ferulic acid, catechol, caffeic acid and p-coumaric acid did not have such ability to shorten prothrombin time at the same final concentration ranges. Certain reducing agents such as t-butanol (2.5 × 10 –2.0 × 10–2 mg mL–1), glutathione (8.0 × 10–2–1 .0 mg mL–1), ascorbic acid (4.2 × 10–2–5.0 × 10–1 mg mL–1) and dithiothreitol (1.0 × 10–2–1.7 × 10–1mg mL–1) could prevent the shortening effects of humic substances or lignin on prothrombin time. These results suggested that humic substances and lignin with a polymerised structure had an ability to affect activities of some blood coagulating enzymes.  相似文献   

15.
The relationship between life-history characteristics and population dynamics were investigated in the onuphid polychaeteKinbergonuphis simoni (Santos, Day and Rice) between 1982 and 1987. The studied population is located in Upper Tampa Bay, Florida, USA. This worm attains sexual maturity at 5 to 10 mo of age, depending on temperature. Several consecutive broods are produced during a female's life time, with 7 to 26 young per brood. Adults die in June–July after the breeding season. Generations of breeding individuals do not overlap and the replacement of generations occurs in July–August. Only one extended breeding season is experienced per life time. Life span does not exceed 2 yr. Field population density in 1982 was high in fall and spring (2000 to 9000 individuals/m2), low in summer (1600 individuals/m2), and slightly depressed in winter (2500 to 4000 individuals/m2). Changes in population density may be explained by seasonal, temperature-controlled changes in instantaneous birth and death rates. Birth rates are high in fall and spring, while death rates are high in early summer. Death of juveniles contributes to the winter density decrease.  相似文献   

16.
Strings of moored sediment traps were deployed in a 150 m water column over a period covering the growth and collapse of the spring bloom (4 April–3 June 1976) in an area of the northern North Sea. The efficiency of collection of material in the moored traps was compared to collections in free-drifting traps in the same area of deployment. The ways in which the data from the trap collections may be interpreted was considered at some length and a best estimate of the flux of organic carbon and nitrogen to the sediment was made. For the period prior to the spring bloom (4–23 April) this flux was 50 mg C m–2 d–1 (about 20% of primary production). During the bloom (24 April–19 May) it was about 185 mg C m–2 d–1 (35% of production) and during early summer (20 May–3 June) it was 115 mg C m–2 d–1, about 25% of the overlying production. The organic carbon and nitrogen content of the material collected was measured and the material was examined microscopically. There was evidence of a large settlement of diatoms immediately after the spring bloom which was reflected in changes in the C:N and C:chlorophyll ratios of the material collected. This change in biochemical composition of the material may affect its nutritional quality and have a stimulatory effect on the growth and reproduction of the animals living in the sediment.  相似文献   

17.
E. Mutlu 《Marine Biology》1999,135(4):603-613
The distribution of Mnemiopsis leidyi Agassiz, 1865 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter, and spring from 1991 to 1995. Distribution was patchy. Average biomasses of 15 to 500 g m−2 were measured, and abundances varied from 10 to 180 ind m−2. Biomass and abundance peaked in winter, and there was a secondary peak in the summer. The distribution of M. leidyi was correlated with hydrographic features in the Black Sea with higher concentrations in anticyclonic gyres. The centers of the two main cyclonic gyres generally had a low biomass of M. leidyi. From July 1992 to March 1995, the populations were largely offshore. M. leidyi were confined to the upper part of the mixed layer both day and night. Some individuals displayed a negative taxis to daylight and were concentrated below the thermocline at night. Smaller M. leidyi (1.5 to 2 cm) were present in the winter, and individuals reached maximum size in the summer. Although reproduction was continuous throughout the year, there were two distinct peaks: the larger peak in the summer and the smaller peak in the winter. Microscopic analysis of stomach contents showed that copepods and molluscs form their main diet. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

18.
The epibenthic megafauna of the high-Arctic Northeast Greenland shelf was investigated by means of seafloor photography and Agassiz trawl catches. At 54 stations in water depths between 40 and 770 m, sequences of color slides, each depicting about 1 m2 of the seafloor, were obtained along photographic transects of about 100 to 600 m length. The photographs were quantitatively analyzed for abundance of epibenthic organisms identified by comparison with specimens collected from trawl catches. Megabenthic biomass was estimated by multiplying density values with averge body mass figures. For five dominant brittle star species, the population oxygen uptake and, thus, organic carbon mineralization potential were approximated by applying individual respiration rates of average-sized specimens to density figures. Multivariate analyses of the megabenthic species distribution revealed a distinct depth zonation. Shallow shelf banks (<150 m), characterized by coarse sediments, many stones and boulders as well as negative bottom water temperatures, housed a rich epifauna (30 to 340 ind m–2, 1.8 to 10.5 g AFDW m–2), strongly dominated (80 to 98% by numbers) by the brittle stars Ophiocten sericeum and Ophiura robusta. The oxygen uptake by brittle stars ranged from 0.4 to 95 mol O2 m–2 h–1 (i.e., assuming a respiratory quotient of 0.8, an organic carbon mineralization of 0.1 to 21.9 mg C m–2 d–1). At the bank flanks sloping to the shelf troughs (100 to 580 m), finer sediments prevailed, stones were rare, and bottom water temperatures were positive due to the inflow of Atlantic water. Compared to bank sites, total epibenthic abundances as well as carbon mineralization by brittle stars were roughly ten times and total biomass about four times smaller. In deep shelf depressions as well as at the continental slope (200 to 770 m), stones were completely lacking, and sediments very fine. Epibenthic standing stock and carbon mineralization were one to two orders of magnitude lower than on the banks. The estimation of brittle star oxygen uptake indicates that a considerable portion of the organic carbon produced in the polynya and partitioned to the benthos may be remineralized by epibenthic bank assemblages.  相似文献   

19.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

20.
Primary production of the marine phanerogam Posidonia oceanica (Linnaeus) Delile was measured by lepidochronological analyses at 22 sites in the Mediterranean Sea (Corsica, France, Italy, Sardinia and Turkey), between 1983 and 1992, to determine spatial and temporal variations. Leaf production (blade and sheath) ranged from 310 to 1 540 mg dry wt shoot–1 yr–1, depending on site and depth. Rhizome production ranged from 24 to 120 mg dry wt shoot–1 yr–1 (6% of average leaf production). At some sites the results obtained by lepidochronological analysis were consistent with earlier results obtained by classic methods (e.g. leaf-marking). While primary production per shoot (mg dry wt shoot–1 yr–1) displayed no significant differences between sites, primary production of the P. oceanica meadow (g dry wt m–2 yr–1) decreased with increasing depth at all sites studied. This decrease correlated with reduced density of the meadow (number of shoots per m2) with increasing depth. Past primary production was also extrapolated at three sites at the island of Ischia (Italy) for a period of 5 yr in order to determine interannual variations over a period of several years. While major variations were recorded for the surface stations (5 and 10 m depth), production remained stable at the deepest station (20 m depth). Given the large geographical scale of the study (location, depth range), it would appear that while P. oceanica production remains considerable, the values recorded in the literature on the basis of classical analyses (surface stations) represent maxima, and cannot be generalised for meadows as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号