首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Ant supercolonies (large networks of interconnected nests) represent the most extreme form of multi-queen breeding (polygyny) and have been found across ant lineages, usually in specific long-term stable populations. Many studies on the genetic population structure and demography of ant supercolonies have been done in recent decades, but they have lacked multicolonial control patches with separated colonies headed by a single or few queens so the origin of the supercolonial trait syndrome has remained enigmatic. Here, we set out to compare sympatric supercolonial and multicolonial patches in two natural Danish populations of the common red ant Myrmica rubra. We used DNA microsatellites to reconstruct genetic colony/population structure and obtained morphological and density measurements to estimate life history and ecology covariates. We found that supercolonies in both populations completely dominated their patches whereas colonies in multicolonial patches coexisted with other ant species. Supercolony patches had very low genetic differentiation between nests, negligible relatedness within nests, and lower inbreeding than multicolonial patches, but there were no significant morphological differences. One population also had nests that approached true outbred monogyny with larger workers and males but smaller queens than in the two other social nest types. Our results suggest that once smaller colonies start to adopt additional queens, they also gain the potential to ultimately become supercolonial when the habitat allows rapid expansion through nest budding. This is relevant for understanding obligate polygyny in ants and for appreciating how and why introduced North American populations of M. rubra have recently become invasive.  相似文献   

2.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

3.
The effect of the spatial arrangement of habitat patches on the survival of resident populations were considered in a stochastic model using population parameters appropriate to Peromyscus leucopus. The 34 possible arrangements of connections among five otherwise identical patches were simulated in order to determine the survival probabilities and population sizes.The main findings are that populations in completely isolated patches have lower survival probabilities than those in patches that are connected to other patches, are connected to the survival probabilities of populations in connected patches increases with the size of the largest geometric figure of which the patch is a part. The results are discussed in the context of resource management.  相似文献   

4.
A thorough knowledge on the genetic connectivity of marine populations is important for fisheries management and conservation. Using a dense population sampling design and two types of neutral molecular markers (10 nuclear microsatellite loci and a mtDNA cytochrome b fragment), we inferred the genetic connectivity among the main known spawning grounds of sole (Solea solea L.) in the North-East Atlantic Ocean. The results revealed a clear genetic structure for sole in the North-East Atlantic Ocean with at least three different populations, namely the Kattegat/Skagerrak region, the North Sea and the Bay of Biscay, and with indications for a fourth population, namely the Irish/Celtic Sea. The lack of genetically meaningful differences between biological populations within the southern North Sea is likely due to a large effective population size and sufficient connection (gene flow) between populations. Nevertheless, an isolation-by-distance pattern was found based on microsatellite genotyping, while no such pattern was observed with the cytochrome b marker, indicating an historical pattern prevailing in the latter marker. Our results demonstrate the importance of a combined multi-marker approach to understand the connectivity among marine populations at region scales.  相似文献   

5.
This paper presents a metapopulation study of the bush cricket, Metrioptera bicolor , living in a recently fragmented landscape. The species inhabits grass and heathland patches of varying area and isolation. Analyses are made of how these geometrical factors affect local population size and density, distribution pattern, and the probability of local extinction and colonization. The proportion of available patches occupied varied between 72 and 79% during 1985–1990. Unoccupied patches were smaller and more isolated than those that were occupied. Patches where populations became extinct during this period were smaller than those with persisting populations. Since local population size was well correlated with patch area, it was clear that stochastic extinctions only occurred in small populations. Critical patch size for population extinction was approximately half a hectare. Colonized patches were less isolated than those that had not been colonized. Critical inter-patch distance for colonization was about 100 meters. The turnover was restricted to an identifiable share of the available patches. Only 33% of the patches were so small that extinction due to stochastic causes could be considered highly probable. This metapopulation will therefore most likely persist over a considerable period in its present spatial structure. There are apparent threats of further fragmentation, however, and nothing is known about the likelihood of large-scale extinctions resulting from extremely unfavorable weather conditions. Nevertheless, our results show that it is appropriate to include geometrical factors in metapopulation models.  相似文献   

6.
Self-recruitment rates are essential parameters in the estimation of connectivity among populations, having important consequences in marine conservation biology. Using ten highly polymorphic microsatellite loci, we estimate, over 3 years, the self-recruitment in a population of Tripterygion delaisi in the NW Mediterranean. Six previously described source populations were used for the assignment (Costa Brava, Columbretes, Formentera, Cabo de Palos, Cabo de Gata and Tarifa). Even though this species has a 16–21 day larval duration, a mean of 66.4 ± 1.4% of the recruits settled in their natal population. When refining in a more local scale the origin of individuals self-recruited to Costa Brava, using as source the three sampling localities that conform this population (Cap de Creus, Tossa and Blanes), the highest percentage (40.6 ± 8.9%) was self-assigned to the adult source locality (Blanes) where recruits were sampled each year. Our results suggest that a high proportion of the larvae of T. delaisi remained close to, or never leave, their natal spawning area. This observation can be extrapolated to other species with similar early life-history traits and low adult mobility and can have important implications for the conservation and management of Mediterranean littoral fishes.  相似文献   

7.
A large macrogeographic differentiation has been observed among Sotalia guianensis populations along the South American coast. However, no genetic structure has been detected so far in closely distributed populations of this species, even though it has been observed in other cetaceans. Here, we examined the fine scale population structure for the largest populations of S. guianensis inhabiting Sepetiba and Paraty embayments at the south-eastern coast of Rio de Janeiro, Brazil. Analysis of mitochondrial DNA (mtDNA) control region sequences failed to detect variability among sequences. Conversely, evidence of significant male population structure was found on the basis of ten nuclear microsatellite loci. Surprisingly, the microsatellite markers were able to distinguish between individuals from the two embayments located 60 km apart. The results suggest that differences in habitat type and behavioral specializations are likely to explain the patterns of genetic structure. These findings should provide baselines for the management of communities exposed to increasing human-driven habitat loss.  相似文献   

8.
Summary Population density affects the dynamics of mate acquisition and the opportunity for sexual selection in natural populations of the seed bug, Neacoryphus bicrucis Say (Hemiptera : Lygaeidae). The opportunity for sexual selection and the intensity of directional sexual selection on body length increased as the population density declined within a season for a population in a small, disjunct patch of host plant, Senecio anonymus. In a larger, dispersed population, both measures of selection were greater in host plant patches of low rather than high adult density when the population was sampled at peak density. Under conditions of higher density, males were more likely to share plants, larger males were less likely to monopolize patches of host plant to which females were attracted for mating, and smaller males were more likely to mate in the presence of large males. Thus, resource defense polygyny collapsed under high density, obviating the advantage of size in territory control, and resulted in scramble competition among males for mates. The population exhibited significant additive genetic variation for body length. This suggests that natural selection acting on other components of fitness favors smaller size or that the direction of sexual selection on size fluctuates between generations in response to the between-year variation in population density. Thus, strong sexual selection appears to impose a significant genetic load.  相似文献   

9.
Cronin JT 《Ecology》2007,88(12):2966-2976
Field experiments that examine the impact of immigration, emigration, or landscape structure (e.g., the composition of the matrix) on the source sink dynamics of fragmented populations are scarce. Here, planthoppers (Prokelisia crocea) and egg parasitoids (Anagrus columbi) were released among host-plant patches that varied in structural (caged, isolated, or in a network of other patches) and functional (mudflat matrix that impedes dispersal vs. brome-grass matrix that facilitates dispersal) connectivity. Planthoppers and parasitoids on caged patches exhibited density-dependent growth rates, achieved high equilibrium densities, and rarely went extinct. Therefore, experimental cordgrass patches were classified as population sources. Because access to immigrants did not result in elevated population densities, source populations were not also pseudosinks, i.e., patches whose densities occur above carrying capacity due to high immigration. Planthoppers and parasitoids in open patches in mudflat had dynamics similar to those in caged patches, but went extinct in 4-5 generations in open patches in brome. Brome-embedded patches leaked emigrants at a rate that exceeded the gains from reproduction and immigration; populations of this sort are known as population sieves. For species whose suitable patches are becoming smaller and more isolated as a result of increased habitat fragmentation, emigration losses are likely to become paramount, a condition favoring the formation of population sieves. An increase in the proportion of patches that are sieves is predicted to destabilize regional population dynamics.  相似文献   

10.
Genetic variability within the Cuban population of the white shrimp Litopenaeus schmitti (Burkenroad, 1936) was assessed using five microsatellite loci and samples collected from four sites (Batabanó, Cienfuegos, Tunas de Zaza, and Manzanillo) from November 1999 to March 2000. All loci were polymorphic, and a total of 80 alleles were found, 13 of them private alleles occurring only in a single population and always in low frequencies. The Cienfuegos sample had the highest observed heterozygosity (Ho=0.653), and the Tunas de Zaza sample had the lowest values (Ho=0.605), but there were no significant differences among samples in heterozygosity or in the mean numbers of alleles per locus (ranging from 11.0 to 11.6). Significant differentiation among populations was detected (FST=0.012, P<0.001). Low but significant FST values were revealed in pairwise comparisons between populations. Assignation tests correctly assigned high percentages of individuals to their original populations (74.5%) using a Bayesian approach. The significant differentiation among populations could be due to the restriction of gene flow among populations of L. schmitti and is concordant with previous allozyme studies on Cuban populations.Communicated by J.P. Grassle, New Brunswick  相似文献   

11.
Surveys of the coral-inhabiting snailCoralliophila violacea (Lamarck) (=C. neritoidea Kiener) were made on shallow fringing reefs (<8 m deep) around Hsiao-Liuchiu, Taiwan, between July and October 1990. The snails were aggregated into patches on the surface of massive poritid coral colonies. Coral colonies >40 cm in diameter were more likely to bear patches of snails than smaller colonies, and also to have more snails. The coralliophilids ranged from 5 to 30 mm in aperture length. The sex ratio of the population was biased toward males (539:279), with only a few small individuals of indistinguishable sex. Snails between 6 and 10 mm were all males, while most snails with aperture lengths 20 mm were females. Judging from the distinct size ranges of males and females within patches and from the observed degeneration of the penis, the snails may have changed sex from male to female with increasing size. Sex-change may occur across a wide size range (10 to 20 mm). The correlation of smallest female size and largest male size among patches indicates that snail size at sex-change is peculiar to each individual patch. Those females in patches with a single female (but many males) were significantly smaller than females in multiple-female patches. It is likely that in the absence of females males change sex at a smaller size, whereas in the presence of large females males delay sexchange until they have reached a larger size. The plasticity of size at sex-change may be adaptive and a result of natural selection at the individual level.  相似文献   

12.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   

13.
The giant Australian cuttlefish Sepia apama Gray, 1849 annually forms a massive and unique spawning aggregation in northern Spencer Gulf, South Australia, which has attracted commercial fishing interests in recent years. However, many basic life-history characteristics of S. apama are unknown, and anecdotal evidence suggests that there is more than one species. The present study assessed the population structure and species status of S. apama using data from allozyme electrophoresis, microsatellite loci, nucleotide sequences of the mitochondrial COXIII gene, multivariate morphometrics and colour patterns. Analyses of allozyme and microsatellite allele frequencies revealed two very divergent but geographically separated populations consisting of specimens from the east coast and southern Australia. However, the presence of a heterozygote in a putative contact zone between the east coast and southern Australia suggested that these populations were not reproductively isolated. Mitochondrial haplotypes seem to have introgressed further north into the contact zone than have nuclear alleles. Differences in colour patterns that previously had been attributed anecdotally to different geographic populations were, in fact, correlated with sexual dimorphism. These data are most consistent with S. apama being one species the populations of which were geographically isolated in the past (historical vicariance) and have come into secondary contact. Comparison of microsatellite allele frequencies among four South Australian samples indicated significant deviations from panmixia. South Australian samples were also reliably diagnosed by means of multivariate morphometrics. Significant differences in mantle length were observed among populations.Communicated by M.S. Johnson, Crawley  相似文献   

14.
 We describe three highly polymorphic microsatellite loci which have been isolated from the giant tiger prawn Penaeus monodon. The number of alleles present among 312 samples at the loci Pmo9, Pmo25 and Pmo27 were 84, 34 and 35, respectively, with heterozygosities all >90%. Analyses of the distribution of length variation at three microsatellite loci among five Australian P. monodon populations revealed strong differentiation between populations from the west and those from the northern and eastern coasts. Tests for population differentiation (F st) values and an analogous measure for microsatellite loci (R st) all demonstrated that Western Australian P. monodon are a separate genetic stock which exhibits reduced genetic variation relative to the other populations. Reduced variability is consistent with a recent population bottleneck or colonization by a small founding population from the east when sea links between Indonesia, New Guinea and Australia were re-established following the last ice age. The results of this study are in agreement with previous surveys of P. monodon conducted with allozymes and mtDNA. Received: 18 December 1998 / Accepted: 27 August 1999  相似文献   

15.
Despite the apparent absence of geographic barriers, connectivity among marine populations may be restricted by, for example, ecological or behavioral mechanisms. In such cases, populations may show genetic differentiation even over relatively small spatial scales. Here, mitochondrial sequence data from the cytochrome oxidase I (COI) gene and seven polymorphic microsatellite markers were used to investigate fine geographic scale population genetic structure in the snapping shrimp Alpheus angulosus, a member of the A. armillatus species complex, from collections in Florida, Jamaica, and Puerto Rico carried out from 1999 to 2005. The COI data showed a deep divergence that separated these samples into two mitochondrial clades, but this divergence was not supported by the microsatellite data. The COI data reflect past population divergence not reflected in extant population structure on the whole genome level. The microsatellite data also revealed evidence for moderate population structure between populations as close as ∼10 km, and no evidence for isolation by distance, as divergences between near populations were at least as strong as those between more broadly separated populations. Overall, these data suggest a role for restricted gene flow between populations, though the mechanisms that reduce gene flow in this taxon remain unknown.  相似文献   

16.
To determine the genetic population structure of blue crabs (Callinectes sapidus Rathbun), electrophoretic allozyme analysis was performed on 750 individuals collected from 16 nearshore locations ranging from New York to Texas, USA. Twenty enzymes and non-enzymatic proteins coded by 31 presumptive loci were examined. Twenty-two loci were either monomorphic or polymorphic at less than theP 95 level; alleles for these polymorphic loci were geographically dispersed. Allele frequencies for three of the remaining polymorphic loci were homogeneous over all populations, as were levels of polymorphism and heterozygosity. Phenograms generated by the UPGMA (unweighted pair-group method using arithmetic averages) and distance Wagner methods exhibited no geographic pattern in the clustering of populations. Estimates ofN em (effective number of migrants per generation between populations) indicated substantial gene flow, with aalues sufficiently high to infer panmixia between all blue crab populations from New York to Texas. However, despite this high level of gene flow, two striking patterns of geographic differentiation occurred: genetic patchiness and clinal variation. Allele frequencies atEST-2, GP-1, IDHP-2, DPEP-1, DPEP-2, andTPEP exhibited genetic patchiness on local and range-wide geographic scales, and allele frequencies atEST-2 varied temporally. Genetic patchiness in blue crabs is likely to be the result of the pre-settlement formation and subsequent settlement of genetically heterogeneous patches of larvae; allele frequencies of those larval patches may then be further modified through ontogeny by localized selection. In the Atlantic Ocean, a regional latitudinal cline ofEST-2 allele frequencies was superimposed on the range-wide genetic patchiness exhibited by that locus. This pattern against a background of high gene flow is highly likely to be maintained by selection. In estuaries along the Atlantic Ocean coast, a combination of low adult long-distance migration and a high retention rate of locally spawned larvae could serve to segregate populations and allow for the development of the geographic cline inEST-2. The Gulf of Mexico showed no apparent cline, perhaps due to long-distance migration of females in some regions of the Gulf, or to masking by genetic patchiness. These results emphasize the importance of both ecological and evolutionary time scales and structuring mechanisms in determining genetic population structure.  相似文献   

17.
This study investigated the utility of microsatellite markers for providing information on levels of population connectivity for a low dispersing reef fish in New South Wales (NSW), Australia, at scales ≤400 km. It was hypothesized that the temperate damselfish Parma microlepis, which produces benthic eggs and has limited post-settlement dispersal, would exhibit spatial genetic structure and a significant pattern of isolation-by-distance (IBD). A fully nested hierarchical sampling design incorporating three spatial scales (sites, location and regions, separated by 1–2, 10–50 and 70–80 km respectively) was used to determine genetic variability at seven microsatellite loci. Broad-scale genetic homogeneity and lack of IBD was well supported by single and multi-locus analyses. The proportion of the total genetic variation attributable to differences among regions, locations or sites was effectively zero (Φ/R-statistics ≤0.007). The geographic distribution of genetic diversity and levels of polymorphism (H E 0.21–0.95) indicate high mutation rates, large effective population sizes, and high rates of gene flow. Significant gene flow may be driven by factors influencing pre-settlement dispersal, including the East Australian Current (EAC) and habitat continuity. Genetic connectivity may not reflect demographically important connectivity, but does imply that P. microlepis populations are well connected from an evolutionary perspective. Total observed genetic diversity was accounted for within 1–2 km of reef and could be represented within small Marine Protected Areas. Reef fishes in NSW which have life histories similar to P. microlepis (e.g. pre-settlement durations ≥2 weeks) are also likely to exhibit genetic homogeneity. Genetic markers are, therefore, most likely to provide information on demographically relevant connectivity for species with lower dispersal capabilities, small population sizes, short life spans, and whose habitats are rare, or patchily distributed along-shore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Microsatellite markers were developed and employed to assess genetic maternity and paternity of embryos in nest-tended clutches of the Molly Miller (Scartella cristata), a marine fish in which alternative reproductive tactics (ARTs) by males were recently described from behavioral and morphological evidence. Genetic data gathered for 1,536 surveyed progeny, from 23 barnacle-nest holes in a single Floridian population, indicate that on average about 5.5 females (range 3–9) contributed to the pool of progeny within a nest. With regard to paternity, the microsatellite data demonstrate that most of the surveyed nests (82.6%) contained at least some embryos that had not been sired by the nest-tending (bourgeois) male, and overall that 12.4% of offspring in the population had been sired via "stolen" fertilizations by other males. These are among the highest values of cuckoldry documented to date in nest-tending fishes, and they support and quantify the notion that the nest-parasitic ART is reproductively quite successful in this species despite what would otherwise seem to be highly defensible nesting sites (the restricted interior space of a barnacle shell). Our estimated cuckoldry rates in this population of the Molly Miller are compared to those previously reported for local populations in other nest-tending fish species, with results discussed in the context of ecological and behavioral variables that may influence relative frequencies of nest parasitism.  相似文献   

19.
The depletion of shallow-water fish stocks through overexploitation has led to increasing fishing pressure on deep-sea species. Poor knowledge of the biology of commercially valuable deep-water fish has led to the serial depletion of stocks of several species across the world. Data regarding the genetic structure of deep-sea fish populations is important in determining the impact of overfishing on the overall genetic variability of species and can be used to estimate the likelihood of recolonisation of damaged populations through immigration of individuals from distant localities. Here the genetic structure of the commercially fished deep-water species the blackspot sea bream, Pagellus bogaraveo is investigated in the northeastern Atlantic using partial DNA sequencing of mitochondrial cytochrome b (cyt-b) and D-loop regions and genotyping of microsatellite loci. An absence of variation in cyt-b and low genetic variation in D-loop sequences potentially indicate that P. bogaraveo may have undergone a severe bottleneck in the past. Similar bottlenecks have been detected in other Atlantic species of fish and have possibly originated from the last glaciation. P. bogaraveo may have been particularly vulnerable to the effects of low temperature and a fall in sea level because stages of its life history occur in shallow water and coastal sites. However, there are other explanations of low genetic variability in populations of P. bogaraveo, such as a low population size and the impacts of fishing on population structure. Analysis of population structure using both D-loop and microsatellite analysis indicates low to moderate, but significant, genetic differentiation between populations at a regional level. This study supports studies on other deep-sea fish species that indicate that hydrographic or topographic barriers prevent dispersal of adults and/or larvae between populations at regional and oceanographic scales. The implications for the management and conservation of deep-sea fish populations are discussed.Communicated by J.P. Thorpe, Port Erin  相似文献   

20.
Abstract: The controversy (  Berger 1990, 1999 ; Wehausen 1999 ) over rapid extinction in bighorn sheep ( Ovis canadensis ) has focused on population size alone as a correlate to persistence time. We report on the persistence and population performance of 24 translocated populations of bighorn sheep. Persistence in these sheep was strongly correlated with larger patch sizes, greater distance to domestic sheep, higher population growth rates, and migratory movements, as well as to larger population sizes. Persistence was also positively correlated with larger average home-range size ( p = 0.058, n = 10 translocated populations) and home-range size of rams ( p = 0.087, n = 8 translocated populations). Greater home-range size and dispersal rates of bighorn sheep were positively correlated to larger patches. We conclude that patch size and thus habitat carrying capacity, not population size per se, is the primary correlate to both population performance and persistence. Because habitat carrying capacity defines the upper limit to population size, clearly the amount of suitable habitat in a patch is ultimately linked to population size. Larger populations (250+ animals) were more likely to recover rapidly to their pre-epizootic survey number following an epizootic ( p = 0.019), although the proportion of the population dying in the epizootic also influenced the probability of recovery ( p = 0.001). Expensive management efforts to restore or increase bighorn sheep populations should focus on large habitat patches located ≥23 km from domestic sheep, and less effort should be expended on populations in isolated, small patches of habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号