首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
2.
ABSTRACT: This study assesses the potential impact of climate change on stream flow and nutrient loading in six watersheds of the Susquehanna River Basin using the Generalized Watershed Loading Function (GWLF). The model was used to simulate changes in stream flow and nutrient loads under a transient climate change scenario for each watershed. Under an assumption of no change in land cover and land management, the model was used to predict monthly changes in stream flow and nutrient loads for future climate conditions. Mean annual stream flow and nutrient loads increased for most watersheds, but decreased in one watershed that was intensively cultivated. Nutrient loading slightly decreased in April and late summer for several watersheds as a result of early snowmelt and increasing evapotranspiration. Spatial and temporal variability of stream flow and nutrient loads under the transient climate scenario indicates that different approaches for future water resource management may be useful.  相似文献   

3.
ABSTRACT: Riffles in moderately entrenched stream reaches with gradients of 2 percent to 4 percent that have received excessive sediment from upstream have a distinctly different and higher proportion of smaller mobile particles than riffles in systems that are in dynamic equilibrium. The mobile fraction on the riffle can be estimated by comparing the relative abundance of various particle sizes present on the riffle with the dominant large particles on an adjacent bar. Riffle particles smaller than the dominant large particles on the bar are interpreted as mobile. The mobile percentile of particles on the riffle is termed “Riffle Stability Index” (RSI) and provides a useful estimate of the degree of increased sediment supply to riffles in mountain streams. The RSI addresses situations in which increases in gravel bedload from headwaters activities is depositing material on riffles and filling pools, and it reflects qualitative differences between reference and managed watersheds. The RSI correlates well with other measures of stream channel physical condition, such as V and the results of fish habitat surveys. Thus, it can be used as an indicator of stream reach and watershed condition and also of aquatic habitat quality.  相似文献   

4.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

5.
ABSTRACT: Forty‐six independent stream reaches in southeastern Pennsylvania were surveyed to assess the relationships between geomorphic and habitat variables and watershed total impervious area (TIA) and to test the ability of the impervious cover model (ICM) to predict the impervious category based on stream reach variables. Ten variables were analyzed using simple and multivariate statistical techniques including scatter‐plots, Spearman's Rank correlations, principal components analysis (PCA), and discriminant analysis (DA). Graphical analysis suggested differences in the response to TIA between the stream reaches with less than 13 percent TIA and those with greater than 24 percent TIA. Spearman's Rank correlations showed significant relationships for large woody debris and sinuosity when analyzing the entire dataset and for depth diversity and the standard deviation of maximum pool depths when analyzing stream reaches with greater than 24 percent TIA. Classification into the ICM using DA was 49 percent accurate; however, the stream reaches did support the ICM in other ways. These results indicate that stream reach response to urbanization may not be consistent across geographical regions and that local conditions (specifically riparian buffer vegetation) may significantly affect channel response; and the ICM, used in the appropriate context, can aid in the management of stream reaches and watersheds.  相似文献   

6.
Water quality regulation and litigation have elevated the awareness and need for quantifying water quality and source contributions in watersheds across the USA. In the present study, the regression method, which is typically applied to large (perennial) rivers, was evaluated in its ability to estimate constituent loads (NO(3)-N, total N, PO(4)-P, total P, sediment) on three small (ephemeral) watersheds with different land uses in Texas. Specifically, regression methodology was applied with daily flow data collected with bubbler stage recorders in hydraulic structures and with water quality data collected with four low-frequency sampling strategies: random, rise and fall, peak, and single stage. Estimated loads were compared with measured loads determined in 2001-2004 with an autosampler and high-frequency sampling strategies. Although annual rainfall and runoff volumes were relatively consistent within watersheds during the study period, measured annual nutrient and sediment concentrations and loads varied considerably for the cultivated and mixed watersheds but not for the pasture watershed. Likewise, estimated loads were much better for the pasture watershed than the cultivated and mixed landuse watersheds because of more consistent land management and vegetation type in the pasture watershed, which produced stronger correlations between constituent loads and mean daily flow rates. Load estimates for PO(4)-P were better than for other constituents possibly because PO(4)-P concentrations were less variable within storm events. Correlations between constituent concentrations and mean daily flow rate were poor and not significant for all watersheds, which is different than typically observed in large rivers. The regression method was quite variable in its ability to accurately estimate annual nutrient loads from the study watersheds; however, constituent load estimates were much more accurate for the combined 3-yr period. Thus, it is suggested that for small watersheds, regression-based annual load estimates should be used with caution, whereas long-term estimates can be much more accurate when multiple years of concentration data are available. The predictive ability of the regression method was similar for all of the low-frequency sampling strategies studied; therefore, single-stage or random strategies are recommended for low-frequency storm sampling on small watersheds because of their simplicity.  相似文献   

7.
Stream habitat assessments are conducted to evaluate biological potential, determine anthropogenic impacts, and guide restoration projects. Utilizing these procedures, managers must first select a representative stream reach, which is typically selected based on several criteria. To develop a consistent and unbiased procedure for choosing sampling locations, the Illinois Department of Natural Resources and the Illinois Natural History Survey have proposed a technique by which watersheds are divided into homogeneous stream segments called valley segments. Valley segments are determined by GIS parameters including surficial geology, predicted flow, slope, and drainage area. To date, no research has been conducted to determine if the stream habitat within a valley segment is homogeneous and if different valley segments have varying habitat variables. Two abutting valley segments were randomly selected within 13 streams in the Embarras River watershed, located in east-central Illinois. One hundred meter reaches were randomly selected within each valley segment, and a transect method was used to quantify habitat characteristics of the stream channel. Habitat variables for each stream were combined through a principal components analysis (PCA) to measure environmental variation between abutting valley segments. A multivariate analysis of variance (MANOVA) was performed on PCA axes 1–3. The majority of abutting valley segments were significantly different from each other indicating that habitat variability within each valley segment was less than variability between valley segments (5.37 ≤ F ≤ 245.13; P ≤ 0.002). This comparison supports the use of the valley segment model as an effective management tool for identifying representative sampling locations and extrapolating reach-specific information.  相似文献   

8.
Surface runoff water quality in a managed three zone riparian buffer   总被引:2,自引:0,他引:2  
Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.  相似文献   

9.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

10.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

11.
Detecting Temporal Change in Watershed Nutrient Yields   总被引:2,自引:1,他引:1  
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act.  相似文献   

12.
A five-year record of streamflow and chemical sampling data was evaluated to assess the effects of large-scale prairie restoration on transport of NO3-N, Cl, and SO4 loads from paired 5,000-ha watersheds located in Jasper County, Iowa. Water quality conditions monitored during land use conversion from row crop agriculture to native prairie in the Walnut Creek watershed were compared with a highly agricultural control watershed (Squaw Creek). Combining hydrograph separation with a load estimation program, baseflow and stormflow loads of NO3-N, Cl, and SO4 were estimated at upstream and downstream sites on Walnut Creek and a downstream site on Squaw Creek. Chemical export in both watersheds was found to occur primarily with baseflow, with baseflow transport greatest during the late summer and fall. Lower Walnut Creek watershed, which contained the restored prairie areas, exported less NO3-N and Cl compared with upper Walnut Creek and Squaw Creek watersheds. Average flow-weighted concentrations of NO3-N exceeded 10 mg/L in upper Walnut Creek and Squaw Creek, but were estimated to be 6.6 mg/L in lower Walnut Creek. Study results demonstrate the utility of partitioning loads into baseflow and stormflow components to identify sources of pollutant loading to streams.  相似文献   

13.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

14.
Management of agricultural nonpoint-source pollution continues to be a challenge because of spatial and temporal variability. Using stream order as an index, we explored the distribution of nitrate concentration and load along the stream network of a large agricultural watershed in Pennsylvania-the East Mahantango Creek Watershed and two of its sub-watersheds. To understand nitrate concentration variation in the stream water contributed from ground water, this study focused on baseflow. Impacts of agricultural land use area on baseflow nitrate in the stream network were investigated. Nitrate concentration showed a general decreasing trend with increasing stream order based on stream order averaged values; however, considerable spatial and temporal variability existed within each snapshot sampling. Nitrate loads increased with stream order in a power function because of the dominant effect of stream flow rate over the nitrate concentration. Within delineated sub-watersheds based on stream orders, positive linear functions were found between agricultural land use area percentage and the baseflow nitrate concentration and between agricultural drainage area and the nitrate load. The slope of the positive linear regression between the baseflow nitrate concentration and percent agricultural land area seems to be a valuable indicator of a watershed's water quality as influenced by agricultural practices, watershed size, and specific physiographic setting. Stream order seems to integrate, to a certain degree, the source and transport aspects of nonpoint-source pollution on a yearly averaged basis and thus might provide a quick estimate of the overall trend in baseflow nitrate concentration and load distribution along complex stream networks in agricultural watersheds.  相似文献   

15.
ABSTRACT: A study was conducted in the Piedmont province of Maryland to determine if a relationship exists between stream quality and the extent of watershed urbanization. During the first phase of the study 27 small watersheds, having similar characteristics but varied according to land use, were investigated. Using these controlled conditions, eliminating as many interferences as possible, this first phase was intended to determine if a definite relationship did exist between the two factors. Finding that the first phase was successful the second was initiated which consisted of a comparison of biological sampling data, from other studies, with degree of watershed urbanization. The purpose of this second phase was to ascertain if the relationship between degrees of urbanization and decline in stream quality was linear as watershed area increased and in streams spread throughout the Maryland Piedmont. The principal finding of this study was that stream quality impairment is first evidenced when watershed imperviousness reaches 12%, but does not become severe until imperviousness reaches 30%.  相似文献   

16.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

17.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

18.
Wild salmon stocks in the Pacific Northwest are imperiled by a variety of declining habitat factors, including riparian shade and in-channel large wood. In this paper, a relatively simple lidar model of the riparian canopy was used along anadromous streams in the Skagit River watershed in western Washington State, United States, to delineate where riparian trees were most lacking, and where restoration efforts would have the greatest benefit in terms of shade and large wood recruitment potential. Within a 45-m riparian buffer, 61% of riparian zones were currently incapable of delivering large wood to the stream. Current potential for large wood recruitment is greatest adjacent to stream edges and falls off rapidly with distance from the channel. Approximately 99% of large wood recruitment potential lies within 45 m of the channel edge, and 50% of the wood potential is within 9 m. A hypothetical canopy model in which all trees mature to a 100-year height would provide 18% more shade distributed over the entire watershed, and 90% more shade in the tributaries. Most of the potential gains in improved shade and large wood contributions are in agricultural areas, as opposed to forestry or urban land uses. The shade and large wood models were constructed from widely available geographic information system tools and are readily transferable to other watersheds with similar characteristics. Model outputs are intended for use in planning restoration projects, as an input to stream temperature models, and to inform policy on restoration priorities and regulatory buffer widths.  相似文献   

19.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

20.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号