首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By suppressing pest populations, natural enemies provide an important ecosystem service that maintains the stability of agricultural ecosystems systems and potentially mitigates producers' pest control costs. Integrating natural control services into decisions about pesticide-based control has the potential to significantly improve the economic efficiency of pesticide use, with socially desirable outcomes. Two gaps have hindered the incorporation of natural enemies into pest management decision rules: (1) insufficient knowledge of pest and predator population dynamics and (2) lack of a decision framework for the economic tradeoffs among pest control options. Using a new intra-seasonal, dynamic bioeconomic optimization model, this study assesses how predation by natural enemies contributes to profit-maximizing pest management strategies. The model is applied to the management of the invasive soybean aphid, the most significant serious insect threat to soybean production in North America. The resulting lower bound estimate of the value of natural pest control ecosystem services was estimated at $84 million for the states of Illinois, Indiana, Iowa, Michigan and Minnesota in 2005.  相似文献   

2.
This paper develops a model of invasive species control when the species’ population size is unknown. In the face of an uncertain population size, a resource manager's species-control efforts provide two potential benefits: (1) a direct benefit of possibly reducing the population of invasive species, and (2) an indirect benefit of information acquisition (due to learning about the population size, which reduces uncertainty). We provide a methodology that takes into account both of these benefits, and show how optimal management decisions are altered in the presence of the indirect benefit of learning. We then apply this methodology to the case of controlling the Brown Treesnake (Boiga irregularis) on the island of Saipan. We find that the indirect benefit—the value of information to reduce uncertainty—is likely to be quite large.  相似文献   

3.
We present the idea of using potential infringements on annual allowable harvest targets as an approach to estimate threats from invasive species to the forest products sector. The approach uses present-day harvest levels as a reference level to estimate when and where the impact of a nonnative forest pest could become economically damaging. We use a generic model that simulates spread and damage by nonnative invasive species, basic harvest and forest growth through time. The concept is illustrated with a case study of a new nonnative invasive pest, Sirex noctilio Fabricius on pine resources in eastern Canada. Impacts of invasion on wood supply, in particular, the point at which present-day harvest levels are not attainable, were identified for 77 non-overlapping geographical regions that delimit the primary wood supply areas around large mills and wood processing facilities in eastern Canada. The results identify the minimum area of a pest outbreak that could trigger harvest shortages (approximately 12.5–14 M ha of pine forests in Ontario and Quebec). Beyond this level, the amount of host resource available for harvesting in any given year declines rapidly. The failure to sustain broad-scale harvest targets may be an attractive and intuitive indicator for policy makers and regulators interested in developing control and “slow-the-spread” programs for non-native forest pests.  相似文献   

4.
A number of options are available to those professionals interested in pest management through an integrated approach. The components of this approach are manipulation of vegetation; manipulation of population structure, dynamics, and interaction; and manipulation of the values associated with animal and plant crop production. Each component has numerous methods, which when used alone or in combination, offer a nearly infinite number of alternatives to the successful use of pesticides.Dr. Giles has taught a course in integrated plant pest management at Virginia Tech since 1977. The course is largely taught using computers. Students make management decisions to control pest damage and the computer determines how right they were.  相似文献   

5.
Despite the application of 2.5 million tons ofpesticides worldwide, more than 40% of all potentialfood production is lost to insect, weed, and plantpathogen pests prior to harvest. After harvest, anadditional 20% of food is lost to another group ofpests. The use of pesticides for pest control resultsin an estimated 26 million human poisonings, with220,000 fatalities, annually worldwide. In the UnitedStates, the environmental and public health costs forthe recommended use of pesticides total approximately$9 billion/yr. Thus, there is a need for alternativenon-chemical pest controls, and genetic engineering(biotechnology) might help with this need. Diseaseand insect pest resistance to various pests has beenslowly bred into crops for the past 12,000 years;current techniques in biotechnology now offeropportunities to further and more rapidly improve thenon-chemical control of disease and insect pests ofcrops. However, relying on a single factor, like theBacillus thuringiensis toxin that has beeninserted into corn and a few other crops for insectcontrol, leads to various environmental problems,including insect resistance and, in some cases, athreat to beneficial biological control insects andendangered insect species. A major environmental andeconomic cost associated with genetic engineeringapplications in agriculture relates to the use ofherbicide resistant crops (HRC). In general, HRCtechnology results in increased herbicide use but noincrease in crop yields. The heavy use of herbicidesin HRC technology pollutes the environment and canlead to weed control costs for farmers that may be2-fold greater than standard weed control costs. Therefore, pest control with both pesticides andbiotechnology can be improved for effective, safe,economical pest control.  相似文献   

6.
Increased trade and human mobility result in sizable benefits to society, but are often accompanied by negative consequences, such as increased introduction of invasive pests to different landscapes and seascapes. In this paper, we couple an existing model of the biological spread of Nasutitermes corniger, an invasive neotropical termite recently introduced to Florida, with information on the costs to treat and repair affected structures, and use this coupled model to simulate the potential short-term costs of establishment of this structural pest. We construct empirical distributions of control and repair costs, using surveys of the pest control industry and homeowners, and use them to simulate treatment and damage costs through a re-sampling procedure. Our results suggest that the net present value of potential costs from an unchecked N. corniger invasion in Florida range between $6.9 and $9.9 million over the next 10 years.  相似文献   

7.
Integrated pest risk maps and their underlying assessments provide broad guidance for establishing surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest of interest or how these can be reduced. In this study we demonstrate how the somewhat competing notions of robustness to uncertainty and potential knowledge gains could be used in prioritizing large-scale surveillance activities. We illustrate this approach with the example of an invasive pest recently detected in North America, Sirex noctilio Fabricius. First, we formulate existing knowledge about the pest into a stochastic model and use the model to estimate the expected utility of surveillance efforts across the landscape. The expected utility accounts for the distribution, abundance and susceptibility of the host resource as well as the value of timely S. noctilio detections. Next, we make use of the info-gap decision theory framework to explore two alternative pest surveillance strategies. The first strategy aims for timely, certain detections and attempts to maximize the robustness to uncertainty about S. noctilio behavior; the second strategy aims to maximize the potential knowledge gain about the pest via unanticipated (i.e., opportune) detections. The results include a set of spatial outputs for each strategy that can be used independently to prioritize surveillance efforts. However, we demonstrate an alternative approach in which these outputs are combined via the Pareto ranking technique into a single priority map that outlines the survey regions with the best trade-offs between both surveillance strategies.  相似文献   

8.
Ji L  Wang Z  Wang X  An L 《Environmental management》2011,48(6):1107-1121
According to the Seventh National Forest Inventory (2004–2008), China’s forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations—Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.  相似文献   

9.
The spread of invasive species is a complex ecological process that is affected by both the biology of the species and the spatial structure of a landscape. The rice water weevil (Lissorhoptrus oryzophilus Kuschel), a notorious crop pest found in many parts of the world, is one of the most devastating invasive species in China, and has caused enormous economic losses and ecological damage. Little is known, however, as to how habitat and landscape features affect the spatial spread of this pest. Thus, the main goal of this study was to investigate the relationship between the observed spread pattern of L. oryzophilus and landscape structural factors in Zhejiang Province, China between 1993 and 2001. We quantified the invasive spread of the weevil in terms of both the proportion of infected area and spread distance each year as well as landscape structure and connectivity of rice paddies with landscape metrics. Our results showed that the spread of L. oryzophilus took place primarily in the southwest-northeast direction along coastal areas at a speed of about 36 km per year. The composition and spatial arrangement of landscape elements were key determinants of this unique spread pattern. In particular, the connectivity of early rice paddies was crucial for the invasive spread while other factors such as meteorological and geographical conditions may also have been relevant. To control the spread of the pest, we propose four management measures: (1) to implement a landscape-level planning scheme of cropping systems to minimize habitat area and connectivity for the pest, (2) to reduce the source populations at a local scale using integrated control methods, (3) to monitor and report invasive spread in a timely manner, and (4) to strengthen the quarantine system. To be most effective, all four management measures need to be implemented together through an integrated, multi-scaled approach.  相似文献   

10.
Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various environmental conditions and application methods.  相似文献   

11.
12.
Fish is a major source of livelihood for the majority of people living around the Okavango Delta in northwestern Botswana. Gender dynamics and governance regimes determine differential access to, and control of, resources between women and men in the area. The purpose of this case study is to critically assess the embeddedness of gendered inequities in the governance of Okavango Delta fishery. Primary data was collected through focus group discussions and face‐to‐face interviews of 96 basket fishers from five villages along the Panhandle area of the Okavango River. The study found that past and present Okavango Delta fishery policy and programme interventions tended to entrench rather than minimize gendered disparities between women and men fishers' access to and control over fish resources, asset accumulation and employment opportunities. Basket fishers have intimate knowledge of flood variability, fish migration and habitat and use this knowledge to make decisions about when and where to harvest what fish species. Women fishers' ecological knowledge, interests and concerns however, have been excluded from current zoning and closed season regulations and co‐management structures. The paper concludes that past and current development interventions as well as the regulatory framework continue to entrench pre‐existing gender relations in the fishery sector which excludes, disempowers and marginalizes women fishers. We recommend innovative co‐management and local based structures which recognize the diversity of interests and interest groups.  相似文献   

13.
The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola–Chattahoochee–Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940–1969) and current (1980–2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics.  相似文献   

14.
Intercropping as cultural pest control: Prospects and limitations   总被引:1,自引:0,他引:1  
Agriculturalists have been intercropping (simultaneously growing several crops in the same field) for centuries, and the use of polycultures continues as an important form of agriculture among indigenous peoples in the New and Old World tropics and subtropics One demonstrated advantage of intercropping is a reduction in insect pest populations, explained by higher numbers of natural insect enemies in the intercrop and/or reduced herbivore colonization and tenure time in the intercrop A review of 150 published field studies in which 198 herbivore species were studied shows that 53% of the pest species were less abundant in the intercrop, 18% were more abundant in the intercrop, 9% showed no difference, and 20% showed a variable response Two major problems of the published studies are 1) lack of experimental evidence demonstrating that reduced pest numbers in the intercrop resulted in higher yield, and 2) lack of experimental evidence demonstrating the ecological mechanisms responsible for the intercrop effect There is some theoretical and empirical work suggesting that herbivore movement patterns, rather than natural insect enemies, are often more important in accounting for reduced pest abundance in an intercrop Several examples from the author's work are presented that demonstrate ways of studying the ecological mechanisms underlying pest suppression in intercrops. The successful design of new intercropping systems to reduce pests will require a better theoretical understanding of such ecological mechanisms It is emphasized that intercropping has potential in both developed and developing countries and that many of the impediments to incorporating appropriate strategies of diversification are social rather than technological  相似文献   

15.
Pesticide Risk Indicators (PRIs) are widely used to evaluate and compare the potential health and environmental risks of pesticide use and to guide pest control policies and practices. They are applied to agricultural, landscape and structural pest management by governmental agencies, private institutions and individuals. PRIs typically assess only the potential risks associated with the active ingredients because, with few exceptions, pesticide manufacturers disclose only the identity of the active ingredients which generally comprise only a minor portion of pesticide products. We show that when inert ingredients are identified and assessed by the same process as the active ingredient, the product specific risk can be much greater than that calculated for the active ingredient alone. To maintain transparency in risk assessment, all those who develop and apply PRIs or make decisions based on their output, should clearly disclose and discuss the limitations of the method.  相似文献   

16.
从群落生态学的角度对茶园节肢动物群落动态变化进行了初步探讨.通过对安徽省黄山市休宁县农家茶园的调查,获得了关于茶园节肢动物群落的组成、个体数量及其物种数等数据.结果表明,4-5月份茶园一般不需要进行施药防治,此时天敌种类和数量相对较多,对害虫起控制作用,这一时期应做好害虫测报和防治准备,为茶农防治茶园害虫提供科学方法.  相似文献   

17.
ABSTRACT: This work establishes an industrial water demand (IWD) model for a short term estimate, which considers water reuse technologies and discharge regulations, for the integrated circuit (IC) industry in northern Taiwan. Based on the optimization of an industrial water cost system, a computerized system dynamics model (SD model) is developed to generate individual firm IWD using data from year 2000. A market IWD is further constructed for 25 1C firms in the study area and is approximated by an inverse logistic curve. Analytical results demonstrate that price elasticity varies with water price in cases involving water reuse.  相似文献   

18.
In the United States, environmental regulatory agencies are required to use “best available” scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.  相似文献   

19.
The chemical environment of pest species may be considered a habitat susceptible to management Management may be by means of manipulation of the environment of the pest for population suppression or for enhancement of natural enemies Examples of each are reviewed here Chemical stimuli influencing the behavior of phytophagous insects include host plant originated stimuli and pheromones The latter, especially sex pheromones, have proved most successful as tools for manipulation of pest population dynamics Factors influencing search behavior of natural enemies include habitat characteristics such as crop, associated plants and plant assemblages, host plant characteristics, influence of associated organisms, and characteristics of the searching entomophage Recent studies have shown potential for simultaneous management of a pest species and enhancement of natural enemies using pest pheromones  相似文献   

20.
Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号