首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used spatial simulation models to evaluate how current and two alternative policies might affect potential biodiversity over 100 years in the Coast Ranges Physiographic Province of Oregon. This 2.3-million-ha province is characterized by a diversity of public and private forest owners, and a wide range of forest policy and management objectives. We evaluated habitat availability for seven focal species representing different life histories. We also examined how policies affected old-growth stand structure, age distributions relative to the historical range of variability, and landscape patterns of forest types. Under the current policy scenario, the area of habitat for old-growth forest structure and associated species increased over time, the habitat for some early-successional associates remained stable, and the area of hardwood vegetation and diverse early-successional stages declined. The province is projected to move toward but not reach the historical range of variation of forest age classes that may have occurred under the wildfire regimes of the pre-Euroamerican settlement period. Ownership explained much of the pattern of biodiversity in the province, and under the current policy scenario, its effect increased over time as the landscape diverged into highly contrasting forest structures and ages. Patch type diversity declined slightly overall but declined strongly within ownerships. Most of the modeled change in biodiversity over time resulted from policies on public forest lands that were intended to increase the area of late-successional forests and species. One of the alternative policies, increased retention of wildlife trees on private lands, reduced the contrast between ownerships and increased habitat availability over time for both early- and late-successional species. Analysis of another alternative, stopping thinning of plantations on federal lands, indicated that current thinning regimes improve habitat for the Olive-sided Flycatcher, but the no-thinning alternative had no effect on the habitat scores for the late-successional species in the 100-year simulation. A comparison of indicators of biological diversity suggests that using focal species and forest structural measures can provide complementary information on biodiversity. The multi-ownership perspective provided a more complete synthesis of province-wide biodiversity patterns than assessments based on single ownerships.  相似文献   

2.
Forest biodiversity policies in multi-ownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range Physiographic Province of Oregon. This mountainous area of conifer and hardwood forests includes a mosaic of landowners with a wide range of goals, from wilderness protection to high-yield timber production. We projected forest changes over 100 years in response to logging and development using models that integrate land use change and forest stand and landscape processes. We then assessed responses to those management activities using GIS models of stand structure and composition, landscape structure, habitat models for focal terrestrial and aquatic species, timber production, employment, and willingness to pay for biodiversity protection. Many of the potential outcomes of recently enacted policies are consistent with intended goals. For example, we project the area of structurally diverse older conifer forest and habitat for late successional wildlife species to strongly increase. 'Other outcomes might not be consistent with current policies: for example, hardwoods and vegetation diversity strongly decline within and across owners. Some elements of biodiversity, including streams with high potential habitat for coho salmon (Oncorhynchus kisutch) and sites of potential oak woodland, occur predominately outside federal lands and thus were not affected by the strongest biodiversity policies. Except for federal lands, biodiversity policies were not generally characterized in sufficient detail to provide clear benchmarks against which to measure the progress or success. We conclude that land management institutions and policies are not well configured to deal effectively with ecological issues that span broad spatial and temporal scales and that alternative policies could be constructed that more effectively provide for a mix of forest values from this region.  相似文献   

3.
The crisis in the early 1990s over conservation of biodiversity in the forests of the Pacific Northwest caused an upheaval in forest policies for public and private landowners. These events led to the development of the Coastal Landscape Assessment and Modeling Study (CLAMS) for the Coast Range Physiographic Province of Oregon, a province containing over two million hectares of forest with a complex mixture of public and private ownership. Over a decade, CLAMS scientists developed regional data bases and tools to enable assessments of the implications of current policies for biodiversity and have begun using these data and tools to test ideas for solving policy problems. We summarize here four main lessons from our work: (1) Regional ecosystem perspectives, while rewarding, are difficult to achieve. Helping policy makers and the public understand biodiversity policies for an entire province can assist in developing more reasoned policies. However, this result is difficult to achieve because needed scientific building blocks generally do not exist, few policy institutions address regional cross-ownership issues, people can find it difficult to take a regional view, and the appropriate region for analysis changes with the policy problem. (2) Interest in environmental policy analysis may come as much from a pursuit of power as a pursuit of understanding. Biodiversity policy analyses are often viewed as weapons in an ongoing political battle. Also, results that might destabilize existing policies generally will not be well received by those in power. (3) The relationship of regional analyses to civic processes remains challenging and unsettled. Communication between citizens and scientists takes real effort. Also, collaborative processes both inspire and constrain regional policy analysis, and scientific work often proceeds at a different pace than these processes. In the end, CLAMS's most important effect on the civic dialogue may be to change how people think about the Coast Range. (4) An important role exists for anticipatory assessments done independently by scientists. Independent review will be especially important as policy analyses shift to management of nonfederal forests. Our future efforts in CLAMS will focus on evaluating ideas for fundamental changes in forest management.  相似文献   

4.
Information about how vegetation composition and structure vary quantitatively and spatially with physical environment, disturbance history, and land ownership is fundamental to regional conservation planning. However, current knowledge about patterns of vegetation variability across large regions that is spatially explicit (i.e., mapped) tends to be general and qualitative. We used spatial predictions from gradient models to examine the influence of environment, disturbance, and ownership on patterns of forest vegetation biodiversity across a large forested region, the 3-million-ha Oregon Coast Range (USA). Gradients in tree species composition were strongly associated with environment, especially climate, and insensitive to disturbance, probably because many dominant tree species are long-lived and persist throughout forest succession. In contrast, forest structure was strongly correlated with disturbance and only weakly with environmental gradients. Although forest structure differed among ownerships, differences were blurred by the presence of legacy trees that originated prior to current forest management regimes. Our multi-ownership perspective revealed biodiversity concerns and benefits not readily visible in single-ownership analyses, and all ownerships contributed to regional biodiversity values. Federal lands provided most of the late-successional and old-growth forest. State lands contained a range of forest ages and structures, including diverse young forest, abundant legacy dead wood, and much of the high-elevation true fir forest. Nonindustrial private lands provided diverse young forest and the greatest abundance of hardwood trees, including almost all of the foothill oak woodlands. Forest industry lands encompassed much early-successional forest, most of the mixed hardwood-conifer forest, and large amounts of legacy down wood. The detailed tree- and species-level data in the maps revealed regional trends that would be masked in traditional coarse-filter assessment. Although abundant, most early-successional forests originated after timber harvest and lacked legacy live and dead trees important as habitat and for other ecological functions. Many large-conifer forests that might be classified as old growth using a generalized forest cover map lacked structural features of old growth such as multilayered canopies or dead wood. Our findings suggest that regional conservation planning include all ownerships and land allocations, as well as fine-scale elements of vegetation composition and structure.  相似文献   

5.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

6.
The geographic distribution of stream reaches with potential to support high-quality habitat for salmonids has bearing on the actual status of habitats and populations over broad spatial extents. As part of the Coastal Landscape Analysis and Modeling Study (CLAMS), we examined how salmon-habitat potential was distributed relative to current and future (+100 years) landscape characteristics in the Coastal Province of Oregon, USA. The intrinsic potential to provide high-quality rearing habitat was modeled for juvenile coho salmon (Oncorhynchus kisutch) and juvenile steelhead (O. mykiss) based on stream flow, valley constraint, and stream gradient. Land ownership, use, and cover were summarized for 100-m analysis buffers on either side of stream reaches with high intrinsic potential and in the overall area encompassing the buffers. Past management seems to have concentrated nonindustrial private ownership, agriculture, and developed uses adjacent to reaches with high intrinsic potential for coho salmon. Thus, of the area in coho salmon buffers, 45% is either nonforested or recently logged, but only 10% is in larger-diameter forests. For the area in steelhead buffers, 21% is either non-forested or recently logged while 20% is in larger-diameter forests. Older forests are most extensive on federal lands but are rare on private lands, highlighting the critical role for public lands in near-term salmon conservation. Agriculture and development are projected to remain focused near high-intrinsic-potential reaches for coho salmon, increasing the importance of effectively addressing nonpoint source pollution from these uses. Percentages of larger-diameter forests are expected to increase throughout the province, but the increase will be only half as much in coho salmon buffers as in steelhead buffers. Most of the increase is projected for public lands, where policies emphasize biodiversity protection. Results suggest that widespread recovery of coho salmon is unlikely unless habitat can be improved in high-intrinsic-potential reaches on private lands. Knowing where high-intrinsic-potential stream reaches occur relative to landscape characteristics can help in evaluating the current and future condition of freshwater habitat, explaining differences between species in population status and risk, and assessing the need for and feasibility of restoration.  相似文献   

7.
Currently, the most common strategy when managing forests for biodiversity at the landscape scale is to maintain structural complexity within stands and provide a variety of seral stages across landscapes. Advances in ecological theory reveal that biodiversity at continental scales is strongly influenced by available energy (i.e., climate factors relating to heat and light and primary productivity). This paper explores how available energy and forest structural complexity may interact to drive biodiversity at a regional scale. We hypothesized that bird species richness exhibits a hump-shaped relationship with energy at the regional scale of the northwestern United States. As a result, we hypothesized that the relationship between energy and richness within a landscape is positive in energy-limited landscapes and flat or decreasing in energy-rich landscapes. Additionally, we hypothesized that structural complexity explains less of the variation in species richness in energy-limited environments and more in energy-rich environments and that the slope of the relationship between structural complexity and richness is greatest in energy-rich environments. We sampled bird communities and vegetation across seral stages and biophysical settings at each of five landscapes arrayed across a productivity gradient from the Pacific Coast to the Rocky Mountains within the five northwestern states of the contiguous United States. We analyzed the response of richness to structural complexity and energy covariates at each landscape. We found that (1) richness had a hump-shaped relationship with available energy across the northwestern United States, (2) the landscape-scale relationships between energy and richness were positive or hump shaped in energy-limited locations and were flat or negative in energy-rich locations, (3) forest structural complexity explained more of the variation in bird species richness in energy-rich landscapes, and (4) the slope of the relationship between forest structural complexity and richness was steepest in energy-limited locations. In energy-rich locations, forest managers will likely increase landscape-scale bird diversity by providing a range of forest structural complexity across all seral stages. In low-energy environments, bird diversity will likely be maximized by managing local high-energy hotspots judiciously and adjusting harvest intensities in other locations to compensate for slower regeneration rates.  相似文献   

8.
Agroforests can play an important role in biodiversity conservation in complex landscapes. A key factor distinguishing among agroforests is land-use history – whether agroforests are established inside forests or on historically forested but currently open lands. The disparity between land-use histories means the appropriate biodiversity baselines may differ, which should be accounted for when assessing the conservation value of agroforests. Specifically, comparisons between multiple baselines in forest and open land could enrich understanding of species’ responses by contextualizing them. We made such comparisons based on data from a recently published meta-analysis of the effects of cocoa (Theobroma cacao) agroforestry on bird diversity. We regrouped rustic, mixed shade cocoa, and low shade cocoa agroforests, based on land-use history, into forest-derived and open-land-derived agroforests and compared bird species diversity (species richness, abundance, and Shannon's index values) between forest and open land, which represented the 2 alternative baselines. Bird diversity was similar in forest-derived agroforests and forests (Hedges’ g* estimate [SE] = -0.3144 [0.3416], p = 0.36). Open-land-derived agroforests were significantly less diverse than forests (g* = 1.4312 [0.6308], p = 0.023) and comparable to open lands (g* = -0.1529 [0.5035], p = 0.76). Our results highlight how land-use history determined the conservation value of cocoa agroforests. Forest-derived cocoa agroforests were comparable to the available – usually already degraded – forest baselines, but entail future degradation risks. In contrast, open-land-derived cocoa agroforestry may offer restoration opportunities. Our results showed that comparisons among multiple baselines may inform relative contributions of agroforestry systems to bird conservation on a landscape scale.  相似文献   

9.
Abstract: We developed the landscape age-class demographics simulator ( LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the landscape. Parameters describing historical fire regimes were derived from data from a number of existing dendroecological and paleoecological studies. Our results indicated that the historical age-class distribution was highly variable and that variability increased with decreasing landscape size. Simulated old-growth percentages were generally between 25% and 75% at the province scale (2,250,000 ha) and never fell below 5%. In comparison, old-growth percentages varied from 0 to 100% at the late-successional reserve scale (40,000 ha). Province-scale estimates of current old-growth (5%) and late-successional forest (11%) in the Oregon Coast Range were lower than expected under the simulated historical fire regime, even when potential errors in our parameter estimates were considered. These uncertainties do, however, limit our ability to precisely define ranges of historical variability. Our results suggest that in areas where historical disturbance regimes were characterized by large, infrequent fires, management of forest age classes based on a range of historical variability may be feasible only at relatively large spatial scales. Comprehensive landscape management strategies will need to consider other factors besides the percentage of old forests on the landscape, including the spatial pattern of stands and the rates and pathways of landscape change.  相似文献   

10.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

11.
Abstract: Privately owned lands support a large portion of the biodiversity in some areas, but procedures for identifying those private lands critical to the maintenance of biodiversity vary tremendously. We used habitat-based distribution maps in combination with population conservation goals to help identify strategic habitats on private lands in Florida. We used a vegetation map, occurrence data, and published life-history information to create habitat-based distribution maps for 179 rare taxa. We estimated the security of 130 of the taxa by overlaying public land boundaries on habitat maps and then estimating whether conservation lands satisfied a population goal of supporting at least 10 populations of approximately 200 breeding adults. The remaining taxa were evaluated in terms of number of occurrence records on conservation lands. Of the 179 taxa evaluated, existing conservation lands did not adequately protect 56. We then identified habitats on private lands that could best satisfy the minimum conservation goal or else significantly enhance the survival potential of inadequately protected taxa. Strategic habitats included a mix of large and small sites, incorporated some corridor or stepping-stone connections among habitat patches, and protected multiple species. Additional strategic habitats were identified for shorebirds, four natural plant communities, and 105 globally rare plants. The strategic habitats identified in Florida cover 1.65 million ha (12% of the land area) and would cost $8.2 billion (about 15% of Florida's annual state budget) to purchase and $122 million per year to manage. Existing conservation lands account for 3.07 million ha (22% of the land area).  相似文献   

12.
Abstract:  The fate of private lands is widely seen as key to the fate of biodiversity in much of the world. Organizations that work to protect biodiversity on private lands often hope that conservation actions on one piece of land will leverage the actions of surrounding landowners. Few researchers have, however, examined whether protected lands do in fact encourage land conservation nearby or how protected lands affect development in the surrounding landscape. Using spatiotemporal data sets on land cover and land protection for three sites (western North Carolina, central Massachusetts, and central Arizona), we examined whether the existence of a protected area correlates with an increased rate of nearby land conservation or a decreased rate of nearby land development. At all sites, newly protected conservation areas tended to cluster close to preexisting protected areas. This may imply that the geography of contemporary conservation actions is influenced by past decisions on land protection, often made for reasons far removed from concerns about biodiversity. On the other hand, we found no evidence that proximity to protected areas correlates with a reduced rate of nearby land development. Indeed, on two of our three sites the development rate was significantly greater in regions with more protected land. This suggests that each conservation action should be justified and valued largely for what is protected on the targeted land, without much hope of broader conservation leverage effects.  相似文献   

13.
The ecological and economic consequences of rain forest conversion and fragmentation for biodiversity, ecosystem functioning, and ecosystem services like protection of soils, water retention, pollination, or biocontrol are poorly understood. In human-dominated tropical landscapes, forest remnants may provide ecosystem services and act as a source for beneficial organisms immigrating into adjacent annual and perennial agro-ecosystems. In this study, we use empirical data on the negative effects of increasing forest distance on both pollinator diversity and fruit set of coffee to estimate future changes in pollination services for different land use scenarios in Sulawesi, Indonesia. Spatially explicit land use simulations demonstrate that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously and thus directly reduce coffee yields by up to 18%, and net revenues per hectare up to 14% within the next two decades (compared to average yields of the year 2001). Currently, forests in the study area annually provide pollination services worth 46 Euros per hectare. However, our simulations also revealed a potential win-win constellation, in which ecological and economic values can be preserved, if patches of forests (or other natural vegetation) are maintained in the agricultural landscape, which could be a viable near future option for local farmers and regional land use planners.  相似文献   

14.
The FORCLIM model of forest dynamics was tested against field survey data for its ability to simulate basal area and composition of old forests across broad climatic gradients in western Oregon, USA. The model was also tested for its ability to capture successional trends in ecoregions of the west Cascade Range. It was then applied to simulate present and future (1990-2050) forest landscape dynamics of a watershed in the west Cascades. Various regimes of climate change and harvesting in the watershed were considered in the landscape application. The model was able to capture much of the variation in forest basal area and composition in western Oregon even though temperature and precipitation were the only inputs that were varied among simulated sites. The measured decline in total basal area from tall coastal forests eastward to interior steppe was matched by simulations. Changes in simulated forest dominants also approximated those in the actual data. Simulated abundances of a few minor species did not match actual abundances, however. Subsequent projections of climate change and harvest effects in a west Cascades landscape indicated no change in forest dominance as of 2050. Yet, climate-driven shifts in the distributions of some species were projected. The simulation of both stand-replacing and partial-stand disturbances across western Oregon improved agreement between simulated and actual data. Simulations with fire as an agent of partial disturbance suggested that frequent fires of low severity can alter forest composition and structure as much or more than severe fires at historic frequencies.  相似文献   

15.
SUMMARY

In recent years, indigenous tenure over forest lands has emerged as a means to conserve forests while recognizing indigenous rights. There is concern, however, that indigenous reserves may not be an appropriate policy tool for sustained forest conservation. Our research examined how recognition of indigenous common-property rights has controlled agricultural expansion and conserved forests in Bosawas Biosphere Reserve, Nicaragua. We used satellite imagery with empirical data gathered in the field on land-use institutions, population pressures, and land-use practices to compare whether indigenous communities under territorial management or public management are better able to (1) control the ‘fast threat’ of frontier expansion and (2) address the long-term ecological threats posed by indigenous land-use practices and institutional changes in the region. Our findings are that indigenous residents who share common-property rights over their territories are better able to control agricultural expansion than are indigenous residents living on public lands. With respect to the long-term threats to the region, a series of simulations of possible land-use pressures demonstrate that the enforcement of territorial boundaries and further development of indigenous forest management rules will prove crucial in determining land-use capacity and deforestation over the next 50 years.  相似文献   

16.
Abstract:  The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25–33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to "prevent" catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.  相似文献   

17.
Abstract:  Large wild fires occurring in forests, grasslands, and chaparral in the last few years have aroused much public concern. Many have described these events as "catastrophes" that must be prevented through aggressive increases in forest thinning. Yet the real catastrophes are not the fires themselves but those land uses, in concert with fire-suppression policies that have resulted in dramatic alterations to ecosystem structure and composition. The first step in the restoration of biological diversity (forest health) of western landscapes must be to implement changes in those factors that have caused degradation or are preventing recovery. This includes changes in policies and practices that have resulted in the current state of wildland ecosystems. Restoration entails much more than simple structural modifications achieved though mechanical means. Restoration should be undertaken at landscape scales and must allow for the occurrence of dominant ecosystem processes, such as the natural fire regimes achieved through natural and/or prescribed fires at appropriate temporal and spatial scales.  相似文献   

18.
Abstract:  Land-reform and environmental movements, revitalized by the democratization of civil society in Brazil in the 1990s, found their objectives in conflict over forested parcels that settlers want for conversion to agriculture but that are important for wildlife conservation. In the Atlantic Forest, where 95% of the forest is gone, we reviewed three cases of Brazilian nongovernmental organization (NGOs) engagement with the land-reform movement with respect to forest remnants neighboring protected areas that have insufficient habitat for the long-term survival of unique endangered species. In the Pontal do Paranapanema (São Paulo), Poço das Antas (Rio de Janeiro), and southern Bahia, environmental NGOs have supported agricultural alternatives that improve livelihood options and provide incentives for habitat conservation planning. Where land-reform groups were better organized, technical cooperation on settlement agriculture permitted the exploration of mutual interests in conciliating the productive landscape with conservation objectives. Processes of regular consultation among NGOs, environmental agencies, and the private sector revealed that there was less zero-sum conflict over the same lands than commonly perceived. In both groups, technicians found forested lands less suitable for small-scale agriculture, and leaders took risks to justify and support claims to alternative existing agricultural lands. Based on the cases we examined, the construction of landscapes with both forest stewardship and poverty-reducing agrarian reform faces continued obstacles from contradictory agrarian and environmental sector policies and inadequate economic incentives for forest stewardship on private lands.  相似文献   

19.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

20.
Anthropogenic Correlates of Species Richness in Southeastern Ontario Wetlands   总被引:15,自引:0,他引:15  
We examined the relationship between the richness of four different wetland taxa (birds, mammals, herptiles, and plants) in 30 southeastern Ontario, Canada wetlands and two anthropogenic factors: road construction and forest removal/conversion on adjacent lands. Data were obtained from two sources: road densities and forest cover from 1:50,000 Government of Canada topographic maps and species lists and wetland areas from Ontario Ministry of Natural Resources wetland evaluation reports. Multiple regression analysis was used to model the relationships between species richness and wetland area, road density, and forest cover. Our results show a strong positive relationship between wetland area and species richness for all taxa. The species richness of all taxa except mammals was negatively correlated with the density of paved roads on lands up to 2 km from the wetland. Furthermore, both herptile and mammal species richness showed a strong positive correlation with the proportion of forest cover on lands within 2 km. These results provide evidence that at the landscape level, road construction and forest removal on adjacent lands pose significant risks to wetland biodiversity. Furthermore, they suggest that most existing wetland policies, which focus almost exclusively on activities within the wetland itself and/or a narrow buffer zone around the wetland perimeter, are unlikely to provide adequate protection for wetland biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号