首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
The in situ degradation of chlorinated ethenes was assessed in an anaerobic aquifer using stable isotope fractionation approaches, microcosm studies and taxon specific detection of specific dehalogenating groups of bacteria. The aquifer in the Bitterfeld/Wolfen region in Germany contained all chlorinated ethenes, benzene and toluene as contaminants. The concentrations and isotope composition of the chlorinated ethenes indicated biodegradation of the contaminants. Microcosm studies confirmed the presence of in situ microbial communities capable of the complete dechlorination of tetrachloroethene. Taxon specific investigation of the microbial communities indicated the presence of various potential dechlorinating organisms including Dehalococcoides, Desulfuromonas, Desulfitobacterium and Dehalobacter. The integrated approach, using metabolite spectra, molecular marker analysis and isotope studies, provided several lines of evidence for natural attenuation of the chlorinated ethenes.  相似文献   

2.
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes.  相似文献   

3.
A polyphasic approach based on cultivation and direct recovery of 16S rRNA gene sequences was utilized for microbial characterization of an aquifer contaminated with chlorinated ethenes. This work was conducted in order to support the evaluation of natural attenuation of chlorinated ethenes in groundwater at Area 6 at Dover Air Force Base (Dover, DE). Results from these studies demonstrated the aquifer contained relatively low biomass (e.g. direct microscopic counts of < 10(7) bacteria/g of sediment) comprised of a physiologically diverse group of microorganisms including iron reducers, acetogens, sulfate reducers, denitrifiers, aerobic and anaerobic heterotrophs. Laboratory microcosms prepared with authentic sediment and groundwater provided direct microbiological evidence that the mineralization of vinyl chloride and cis-dichloroethene as well as each step in the complete reductive dechlorination of tetracloroethene to ethene can occur in the Area 6 aquifer. Enrichment cultures capable of the oxidative degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) were obtained from groundwater across the aquifer demonstrating the possible importance of direct, non-cometabolic oxidation of cis-DCE and VC in natural attenuation. Culture-independent analyses based upon recovery of 16S rRNA gene sequences revealed the presence of anaerobic organisms distributed primarily between two major bacterial divisions: the delta subdivision of the Proteobacteria and low-G + C gram positive. Recovery of sequences affiliated with phylogenetic groups containing known anaerobic-halorespiring organisms such as Desulfitobacterium, Dehalobacter, and certain groups of iron reducers provided qualitative support for a role of reductive dechlorination processes in the aquifer. This molecular data is suggestive of a functional linkage between the microbiology of the site and the apparent natural attenuation process. The presence and distribution of microorganisms were found to be consistent with a microbially driven attenuation of chlorinated ethenes within the aquifer and in accord with a conceptual model of aquifer geochemistry which suggest that both reductive and oxidative mechanisms are involved in heterogeneous, spatially distributed processes across the aquifer.  相似文献   

4.
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from approximately 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.  相似文献   

5.
A mixed culture capable of supplying its energy requirements by the oxidation of zero-valent iron (Fe0) and concomitant reduction of chlorinated ethenes was established. The culture contained Dehalococcoides species as determined by polymerase chain reaction (PCR) with genus specific primers. The use of a newly designed ARDRA procedure and subsequent sequencing revealed the presence of two Dehalococcoides strains, one closely related to Dehalococcoides ethenogenes strain 195, a bacterium respiring with chlorinated ethenes, and one closely related to strain CBDB1 a chlorobenzene and dioxin dehalogenating anaerobe. The mixed culture was used to study dechlorination of tetrachloroethene (PCE) to ethene in the presence of Fe0. Whereas abiotic transformation of PCE by Fe0 led to incomplete dechlorination, the mixed culture mediated fast and complete dechlorination of PCE to ethene with Fe0 as electron donor. Compared to cultures with hydrogen added as electron donor, cultures with Fe0 as electron donor showed the same or higher rates of PCE dechlorination. Growth of the Dehalococcoides strains in the mixed culture is linked to the presence of Fe0 as electron donor and PCE as electron acceptor demonstrating that Dehalococcoides spp. play a pivotal role in the dechlorination of chlorinated ethenes in Fe0 systems.  相似文献   

6.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   

7.
Microbial degradation of chlorinated dioxins   总被引:2,自引:0,他引:2  
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo-p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions. Anaerobic sediments have been shown to convert tetrachloro- to octachlorodibenzo-p-dioxins to lower chlorinated dioxins including monochlorinated congeners. Taken as a whole, these findings indicate that biodegradation is likely to contribute to the natural attenuation processes affecting PCDD/F compounds.  相似文献   

8.
Rogers SW  Ong SK  Moorman TB 《Chemosphere》2007,69(10):1563-1573
The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detected microbial populations in the contaminated sediments were three orders of magnitude greater than nearby uncontaminated sediments, suggesting growth on coal-tar constituents in situ. Actinobacteria, beta- and gamma-Proteobacteria, and Flavobacteria dominated the in situ aerobic (>1 mg l(-1) dissolved oxygen) microbial community, whereas sulfate-reducing bacteria comprised 37% of the microbial community in the sulfidogenic region of the aquifer. Rapid mineralization of naphthalene and phenanthrene were observed in aerobic laboratory microcosms and resulted in significant enrichment of beta- and gamma-Proteobacteria potentially explaining their elevated presence in situ. Firmicutes, Flavobacteria, alpha-Proteobacteria, and Actinobacteria were also enriched in the mineralization assays, but to a lesser degree. Nitrate- and sulfate-limited mineralization of naphthalene in laboratory microcosms occurred to a small degree in aquifer sediments from locations where groundwater chemistry indicated nitrate- and sulfate-reduction, respectively. Some iron-limited mineralization of naphthalene and phenanthrene was also observed in sediments originating near groundwater measurements of elevated ferrous iron. The results of this study suggest that FISH may be a useful tool for providing a much needed link between laboratory microcosms and groundwater measurements made in situ necessary to better demonstrate the potential for natural attenuation at complex PAH contaminated sites.  相似文献   

9.
Two 11.7-m(3) experimental controlled release systems (ECRS), packed with sandy model aquifer material and amended with tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source zone, were operated in parallel with identical flow regimes and electron donor amendments. Hydrogen Releasing Compound (Regenesis Bioremediation Products, Inc., San Clemente, California), and later dissolved lactate, served as electron donors to promote dechlorination. One ECRS was bioaugmented with an anaerobic dechlorinating consortium directly into the source zone, and the other served as a control (biostimulated only) to determine the benefits of bioaugmentation. The presence of halorespiring bacteria in the aquifer matrix before bioaugmentation, shown by nested polymerase chain reaction with phylogenetic primers, suggests that dechlorinating catabolic potential may be somewhat widespread. Results obtained corroborate that source zone reductive dechlorination of PCE is possible at near field scale and that a system bioaugmented with a competent halorespiring consortium can enhance DNAPL dissolution and dechlorination processes at significantly greater rates than in a system that is biostimulated only.  相似文献   

10.
A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results.  相似文献   

11.
A microcosm study was conducted to evaluate dechlorination of trichloroethene (TCE) to ethene and survival of dechlorinating bacteria after a thermal treatment in order to explore the potential for post-thermal bioremediation. Unamended microcosms containing groundwater and aquifer material from a contaminated site dechlorinated TCE to cis-1,2-dichloroethene (cDCE), while lactate-amended microcosms dechlorinated TCE to cDCE or ethene. A thermal treatment was simulated by heating a sub-set of microcosms to 100 degrees C for 10d followed by cooling to 10 degrees C over 150 d. The heated microcosms demonstrated no dechlorination when unamended. However, when amended with lactate, cDCE was produced in 2 out of 6 microcosms within 300 d after heating. Dechlorination of TCE to cDCE thus occurred in fewer heated (2 out of 12) than unheated (10 out of 12) microcosms. In unheated microcosms, the presence of dechlorinating microorganisms, including Dehalococcoides, was confirmed using nested PCR of 16S rRNA genes. Dechlorinating microorganisms were detected in fewer microcosms after heating, and Dehalococcoides were not detected in any microcosms after heating. Dechlorination may therefore be limited after a thermal treatment in areas that have been heated to 100 degrees C. Thus, inflow of groundwater containing dechlorinating microorganisms and/or bioaugmention may be needed for anaerobic dechlorination to occur after a thermal treatment.  相似文献   

12.
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.  相似文献   

13.
The reductive transformation of the 10 most-widely distributed fluorinated volatile compounds and of tetrachloroethene was investigated for up to 177 days under anaerobic conditions in sewage sludge and aquifer sediment slurries. Concentrations of parent compounds and of degradation products were identified by GC-MS. We observed transformation of CFC-11 to HCFC-21 and HCFC-31, of CFC-113 to HCFC-123a, chlorotrifluoroethene and trifluoroethene, of CFC-12 to HCFC-22, of HCFC-141b to HCFC-151b, and of tetrachloroethene to vinyl chloride and ethene. CFC-114, CFC-115, HCFC-142b, HFC-134a and HCFC-22 were not transformed. The results suggest that with both inocula studied here, hydrogenolysis is the primary reductive dechlorination reaction. CFC-113 was the only compound where a dichloro-elimination was observed, leading to the formation of chlorotrifluoroethene as temporal intermediate and to trifluoroethene as end product. The relative reduction rates of chlorofluoromethanes compared reasonably well with theoretical rates calculated based on thermochemical data according to the Marcus theory. Some of the accumulating HCFCs and haloethenes observed in this study are toxic and may be of practical relevance in anaerobic environments.  相似文献   

14.
15.
The variability of stable carbon isotope fractionation upon reductive dechlorination of tetra- and trichloroethene by several microbial strains was investigated to examine the uncertainties related to the in situ application of compound specific isotope analysis (CSIA) of chlorinated ethenes. Carbon isotope fractionation was investigated with a set of microorganisms representative for the currently known diversity of dehalorespirers: Dehalococcoides ethenogenes strain 195, Desulfitobacterium sp. strain Viet1, Desulfuromonas michiganensis and Geobacter lovleyi sp. strain SZ and compared to the previous reports using Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S. Carbon isotope fractionation of tetrachloroethene (PCE) and trichlorethene (TCE) was highly variable ranging from the absence of significant fractionation to carbon isotope fractionation (epsilonC) of 16.7 and 3.5-18.9 for PCE and TCE, respectively. Fractionation of both compounds by D. ethenogenes strain 195 (PCE: epsilonC=6.0; TCE: epsilonC=13.7) was similar to the literature data for mixed cultures containing Dehalococcoides spp. D. michiganensis (PCE: no significant fractionation; TCE: epsilonC=3.5) and G. lovleyi sp. strain SZ (PCE no significant fractionation; TCE: epsilonC=8.5) generated the lowest fractionation of all studied strains. Desulfitobacterium sp. strain Viet1 (PCE: epsilonC=16.7) gave the highest enrichment factor for PCE.  相似文献   

16.
In situ sequenced bioremediation of mixed contaminants in groundwater   总被引:3,自引:0,他引:3  
A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.  相似文献   

17.
The dichlobenil metabolite BAM (2,6-dichlorobenzamide) is frequently detected in aquifers e.g. in Denmark despite the mother compound dichlobenil was banned here since 1997. BAM mineralization was investigated at environmentally relevant concentrations in sediment samples. Undisturbed sediment cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre-exposed than in pristine sediments from the same location, was only evident in sandy sediment where dichlobenil was still present, but not in clayey sediments. Higher initial concentrations (1-5000 μg/kg) did not stimulate mineralization in pristine clayey or sandy sediments, or in pre-exposed sand. However, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations.  相似文献   

18.
Chlorinated aliphatic hydrocarbons are common groundwater contaminants. One possible remediation option is in-situ reductive dechlorination by zero-valent iron, either by direct injection or as reactive barriers. Chlorinated ethenes (tetrachloroethene: PCE; trichloroethene: TCE) have received extensive attention in this context. However, another common groundwater pollutant, 1,1,1-trichlorethane (TCA), has attracted much less attention. We studied TCA reduction by three types of granular zero-valent irons in a series of batch experiments using polluted groundwater, with and without added aquifer material. Two types of iron were able to reduce TCA completely with no daughter product concentration increases (1,1-dichloroethane: DCA; chloroethane: CA). One type of iron showed slower reduction, with intermediate rise of DCA and CA concentrations. When evaluating the formation of daughter products, the tests on the groundwater alone showed different results than the groundwater plus aquifer batches: DCA did not temporarily accumulate in the batches with added aquifer material, contrary to the batches without added aquifer material. 1,1-dichloroethene (DCE, also present in the groundwater as an abiotic degradation product of TCA) was also reduced slower in the batches without added aquifer material than in the batches with aquifer material. Redox potentials gradually decreased to low values in batches with aquifer material without iron, while the batches with groundwater alone maintained a constant higher redox potential. Either adsorption processes or microbiological activity in the samples could explain these phenomena. Polymerase Chain Reaction (PCR: a targeted gene probe technique) for chlorinated aliphatic compound (CAH)-degrading bacteria confirmed the presence of Dehalococcoides sp. (chloroethene-degraders) but was negative for Desulfobacterium autotrophicum (a known co-metabolic TCA degrader). DCA reduction was rate determining: first-order half-lives of 300-350 h were observed. TCA was fully removed within hours. CA is resistant to reduction by zero-valent iron but it is known to hydrolyze easily. Since CA did not accumulate in our batches, it may have disappeared by the latter mechanism or it may not have formed as a major daughter product.  相似文献   

19.
In situ, sequential, anaerobic to aerobic treatment of groundwater removed perchloroethene (PCE, 1.1 microM) and benzene (0.8 microM) from a contaminated aquifer. Neither aerobic nor anaerobic treatment alone successfully degraded both the chlorinated and non-chlorinated organic contaminants in the aquifer. After the sequential treatment, PCE, trichloroethene (TCE), vinyl chloride (VC), chloroethane (CA), and benzene were not detectable in groundwater. Desorption of residual aquifer contaminants was tested by halting the groundwater recirculation and analyzing the groundwater after 3 and 7 weeks. No desorption of the chlorinated contaminants or daughter products was observed in the treated portion of the aquifer. Sequential anaerobic to aerobic treatment was successful in remediating the groundwater at this test site and may have broad applications at other contaminated sites. Over the 4-year course of the project, the predominant microbial environment of the test site varied from aerobic to sulfate-reducing, to methanogenic, and back to aerobic conditions. Metabolically active microbial populations developed under all conditions, demonstrating the diversity and robustness of natural microbial flora in the aquifer.  相似文献   

20.
In Northern Alberta, the placement of out-of-pit oil sands tailings ponds atop natural buried sand channels is becoming increasingly common. Preliminary modeling of such a site suggests that process-affected (PA) pond water will infiltrate through the underlying clay till aquitard, reaching the sand channel. However, the impact of seepage upon native sediments and groundwater resources is not known. The goal of this study is to investigate the role of adsorption and ion exchange reactions in the clay till and their effect on the attenuation or release of inorganic species. This was evaluated using batch sorption experiments (traditional and a recent modification using less disturbed sediment samples) and geochemical modeling with PHREEQC. The results show that clay till sediments have the capacity to mitigate the high concentrations of ingressing sodium (600 mg L(-1)), with linear sorption partitioning coefficients (K(d)) of 0.45 L kg(-1). Ion exchange theory was required to account for all other cation behaviour, precluding the calculation of such coefficients for other species. Qualitative evidence suggests that chloride will behave conservatively, with high concentrations remaining in solution (375 mg L(-1)). As a whole, system behaviour was found to be controlled by a combination of competitive ion exchange, dissolution and precipitation reactions. Observations, supported by PHREEQC simulations, suggest that the influx of PA water will induce the dissolution of pre-existing sulphate salts. Sodium present in the process-affected water will exchange with sediment-bound calcium and magnesium, increasing the divalent ions' pore fluid concentrations, and leading to the precipitation of a calcium-magnesium carbonate mineral phase. Thus, in similar tailings pond settings, particularly if the glacial till coverage is thin or altogether absent, it is reasonable to expect that high concentrations of sodium and chloride will remain in solution, while sulphate concentrations will exceed those of the ingressing plume (150 mg L(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号