首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The critical paths for radionuclides and the critical foods in Asian countries differ from those in Western countries because agricultural products and diets are different. Consequently, safety assessments for Asian countries must consider rice as a critical food. As most rice is produced under flooded conditions, the uptake of radionuclides by rice is affected by soil conditions. In this report, we summarize radionuclide and stable element soil-to-plant transfer factors (TFs) for rice. Field observation results for fallout 137Cs and stable Cs TFs indicated that while fallout 137Cs had higher TF than stable Cs over several decades, the GM (geometric mean) values were similar with the GM of TF value for 137Cs being 3.6 × 10−3 and that for stable Cs being 2.5 × 10−3. Although there are some limitations to the use of TF for stable elements under some circumstances, these values can be used to evaluate long-term transfer of long-lived radionuclides in the environment. The compiled data showed that TF values were higher in brown rice than in white rice because distribution patterns for elements were different in the bran and white parts of rice grains.  相似文献   

2.
In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.  相似文献   

3.
A generic approach has been developed to simulate dynamically the uptake and turnover of radionuclides by marine biota. The approach incorporates a three-compartment biokinetic model based on first order linear kinetics, with interchange rates between the organism and its surrounding environment. Model rate constants are deduced as a function of known parameters: biological half-lives of elimination, concentration factors and a sample point of the retention curve, allowing for the representation of multi-component release. The new methodology has been tested and validated in respect of non-dynamic assessment models developed for regulatory purposes. The approach has also been successfully tested against research dynamic models developed to represent the uptake of technetium and radioiodine by lobsters and winkles. Assessments conducted on two realistic test scenarios demonstrated the importance of simulating time-dependency for ecosystems in which environmental levels of radionuclides are not in equilibrium.  相似文献   

4.
One of the roles of the BIOMASS Theme 3 Fruit Working Group was to identify significant radionuclides to support its work programme. This paper provides a short review of radionuclide emissions to atmosphere together with comments on their relative dosimetric impacts to identify those radionuclides most relevant to the Fruit Working Group. Speciation of the identified radionuclides is also discussed to identify the most likely chemical forms to which fruits might be exposed. It is noted that no information currently exists on radionuclide speciation in regard to the uptake and retention of radionuclides in fruit crops.  相似文献   

5.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

6.
Naturally occurring and artificially produced radionuclides in the environment may be present in different physico-chemical forms (i.e., radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, degree of complexation, etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time-dependent transformation processes such as mobilisation of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, the original distribution of radionuclides deposited in ecosystems will change over time. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews available fractionation techniques which can be utilised for radionuclide speciation purposes.  相似文献   

7.
The radionuclides (14)C and (3)H may both be released from nuclear facilities. These radionuclides are unusual, in that they are isotopes of macro-elements which form the basis of animal tissues, feed and, in the case of (3)H, water. There are few published values describing the transfer of (3)H and (14)C from feed to animal derived food products under steady state conditions. Approaches are described which enable the prediction of (14)C and (3)H transfer parameter values from readily available information on the stable H or C concentration of animal feeds, tissues and milk, water turnover rates, and feed intakes and digestibilities. We recommend that the concentration ratio between feed and animal product activity concentrations be used as it is less variable than the transfer coefficient (ratio between radionuclide activity concentration in animal milk or tissue to the daily intake of a radionuclide).  相似文献   

8.
Concentrations of radium-228, thorium-228 and radium-226 were measured in different natural forage materials and in feed supplements. The activity concentrations of these nuclides were then determined in the bones of domestic farm animals, with emphasis on their distributions within the skeleton and humerus. Feeds added in recent years to the forage of domestic animals alter the concentrations of the naturally occurring radionuclides. The modified daily radium uptakes associated with the various feeds are reflected in the radium concentrations observed in the different layers of the humerus. Radium uptake and retention are highly dependent on calcium metabolism.We propose a method for calculation of nuclide retention coefficients via an approach which simplifies theis assesssment and provides important information on radium metabolism. The data obtained here are of value in dosimetric assessments related to these natural radionuclides.  相似文献   

9.
An extensive programme of experiments was conducted in the former USSR on transfer of radionuclides to a wide range of different agricultural animals. Only a few of these studies were made available in the English language literature or taken into account in international reviews of gastrointestinal uptake. The paper gives extended information on Russian research on radionuclide absorption in the gut of farm animals performed in controlled field and laboratory experiments from the 1960s to the current time. The data presented in the paper, together with English language values, will be used to provide recommended values of absorption specifically for farm animals within the revision of the IAEA Handbook of Parameter Values IAEA [International Atomic Energy Agency, 1994. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, IAEA technical reports series No. 364. International Atomic Energy Agency, Vienna].  相似文献   

10.
The necessity to provide information about radionuclide concentrations in Arctic marine species has been heightened in recent years due to a number of accidents in Arctic regions involving nuclear vessels and the presence of a large number of potential radioactive contamination sources. The provision for such information is largely dependent on the use of radionuclide uptake and transfer models. The uptake of radionuclides in Arctic seal species in this study has been modelled using a probabilistic biokinetic approach. In this paper, model results are compared with empirical data from relevant samples taken within the Arctic region. Results indicate that the model performs well when estimating concentrations of (137)Cs in two seal species for both median values and reproduction of the distribution of data values, but not as well for a third seal species. Likely factors affecting the results are the probability density functions used for the input parameters.  相似文献   

11.
To assess the long-term environmental impact of radioactive contamination of ecosystems, information on source terms including radionuclide speciation, mobility and biological uptake is needed. A major fraction of refractory radionuclides released from nuclear sources such as nuclear weapons tests and reactor accidents is present as radioactive particles, whilst radionuclides are also present as colloids or low molecular mass species in effluents from nuclear installations. Low molecular mass species are more mobile (lower apparent K(d)) and bioavailable (higher apparent BCF) than colloids and particles. Soils and sediments act as sinks for particles and colloids. Due to particle weathering, associated radionuclides can be remobilised over time. Thus, information on particle characteristics such as composition, particle size, crystalline structures and oxidation states influencing weathering rates and subsequent mobilisation is essential. The present article summarises current knowledge on radioactive particles released from different sources, and the relevance of radionuclide speciation for mobility and biological uptake.  相似文献   

12.
We made quarterly determinations of the transfer coefficients and effective transfer coefficients for the radionuclides 137Cs, 90Sr, 40K, 226Ra, 228Ra and 228Th over a full annual cycle, in a Mediterranean grazing-land ecosystem. The input and output fluxes of the radionuclides between the different compartments of this ecosystem were quantified for the following processes: root uptake; variation in root and aerial biomass; pasture production; translocation; leaf fall; efflux due to grazing action; resuspension and subsequent aerial deposition of radionuclides. We observed there to be a marked seasonal variation for this type of ecosystem in both the transfer coefficients and the radionuclide fluxes, which impedes the soil-plant transfer being characterized on the basis of values that are constant with time.  相似文献   

13.
14C, 35S and 3H are released to the environment during the operation of gas-cooled reactors and were identified as radionuclides of interest by the BIOMASS Fruits Working Group. This paper provides a review of the deposition, uptake, allocation and loss of these radionuclides with respect to fruit and conceptual models for gaseous radionuclides. It is concluded that the mechanisms for the uptake of CO35S, HTO and 14CO2 are well understood and that their deposition velocities have been quantified. There is also a reasonable body of work on the translocation of 14C once in the crop, but much less for 35S and 3H, which are considered to follow source-sink relationships. The loss rates of the three radionuclides show large differences, with tritium lost rapidly in the form of HTO but retained longer when converted to OBT. The losses of 14C are less and those of sulphur are minimal post fixation. When fruit crops alone are considered, the quantity of information is further reduced but predictions on possible behaviour of these radionuclide species can be made from the current knowledge.  相似文献   

14.
Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment.  相似文献   

15.
Allometry, or the biology of scaling, is the study of size and its consequences. It has become a useful tool for comparative physiology. There are several allometric equations that relate body size to many parameters, including ingestion rate, lifespan, inhalation rate, home range and more. While these equations were originally derived from empirical observations, there is a growing body of evidence that these relationships have their origins in the dynamics of energy transport mechanisms. As part of an ongoing effort by the Department of Energy in developing generic methods for evaluating radiation dose to biota, we have examined the utility of applying allometric techniques to predicting radionuclide tissue concentration across a large range of terrestrial and riparian species of animals. This particular study examined 23 radionuclides. Initial investigations suggest that the allometric approach can provide a useful tool to derive limiting values of uptake and elimination factors for animals.  相似文献   

16.
The work presents the radioecological characterization of the new Brazilian uranium mining and milling site located in a semi-arid region of the country. The process characterization demonstrated that in heap leach plants most of the 226Ra remains in the leached ore. Despite the potential higher availability of radium isotopes in the soils of the studied region the lack of precipitation in that area reduces the leaching/mobilization of the radionuclides. High 226Ra and 228Ra concentrations were found in manioc while 210Pb was significant in pasture. It was suggested that a range from 10(-3) to 10(-1) may conveniently encompass most of the transfer factors (TF) values for soil/plant systems (i.e. involving different cultures, different soils and natural radionuclides). Impacts due to aerial transportation of aerosols and radon generated in the mining were proved to be minimal and restricted to an area not greater than 15 km2. Finally, uranium complexation by carbonates was shown to be the main mechanism responding for the elevated radionuclide concentration in groundwater.  相似文献   

17.
This paper reviews the published literature that describes the phenological development of above and below ground organs of temperate fruit trees (top fruit), particularly with respect to apple (Malus domestica). Critical information is presented which is considered appropriate in developing an understanding of the potential for top fruit species to take up radionuclide contaminants from the atmosphere and the soil. Information is cited on how climatic and edaphic factors influence the growth and development of temperate fruit trees, the phenological production of their leaf area and the development and growth of their fruit and hence the potential for foliar and fruit uptake of radionuclides from the atmosphere. The study also reports on the importance of the distribution and phenological development of roots in the soil and the potential for their uptake of radionuclides from the soil. The effects of above and below ground management procedures, within temperate fruit orchards, on potential radionuclide uptake are also considered. It is concluded that the potential for the uptake of radionuclides by temperate fruit tree species will depend on a number of phenological and physiological factors. For uptake from the soil these factors include; root distribution and density in the soil profile, seasonal changes in the production and distribution of roots, and the presence and amount of water in the soil. These factors are themselves influenced by rootstock type and its growth vigour, scion type and its growth vigour, tree age, spacing of trees in the orchard, orchard management practices (presence or absence of weeds or grass under the trees) and soil type and depth. Direct uptake by the shoot, however, will be influenced by the climatic conditions at the time of exposure and the presence of foliage. Deposition and uptake are likely to change with leaf area development and the ability of radionuclides to penetrate the cuticle of the leaf changes with seasonal development. Transport of radionuclides to the fruit may also depend on the time of season, as the importance of the xylem and phloem transport routes can change with the growth and development of the fruit.  相似文献   

18.
An overview of original information available from Russian language papers on radionuclide transfer to milk is provided. Most of the data presented have not been taken into account in international reviews. The transfer coefficient (F(m)) values for radioactive isotopes of strontium, caesium and iodine are in good agreement with those previously published. The Russian language data, often based on experiments with many animals, constitute a considerable increase to the available data for many less well-studied radionuclides. In some instances, the Russian language data suggest changes in recommended values (e.g. Zr and Ru). The information presented here substantially increases the amount of available data on radionuclide transfer to milk and will be included in the current revision of the IAEA TRS Handbook of parameter values for radionuclide transfer.  相似文献   

19.
The dose conversion coefficients (DCCs) for the assessment of internal absorbed dose rate in reference animals and plants have been generally calculated assuming a homogeneous distribution of radionuclides within the body. Realistic scenarios of internal exposure must account for some radionuclides which tend to concentrate in specific organs or tissues. To study the effect of such inhomogeneous distributions, internal DCCs have been calculated assuming both a central and an eccentric point source. The analysis of the results showed that uncertainties of the whole body DCC due to non-homogeneous radionuclide distribution are less than 30% for photons and electrons for all considered organisms. For electrons, the uncertainties are negligible below certain energies, dependent on the size of the organisms. Additionally, the organ doses due to the accumulation of the radionuclide in an organ are also described and organ/whole body doses ratios are estimated.  相似文献   

20.
Recent reviews have established benchmark values for transfer factors that describe radionuclide transfer from plants to animal food product such as milk, eggs and meat. They also illustrate the paucity of data for some elements and some food products. The present study quantified transfer data using indigenous elements measured in dairy, poultry and other livestock farms in Canada. Up to 62 elements are reported, with particular emphasis on iodine (I) because of the need to accurately assess the behaviour of 129I from disposal of nuclear fuel waste. There was remarkable agreement with the literature values, and for many elements the present study involved many more observations than were previously available. Perhaps the most important observation was that product/substrate concentration ratios (CR) were quite consistent across species, whereas the traditional fractional transfer factors (TF, units of d kg−1 or d L−1) necessarily vary with body mass (feed intake). This suggests that for long-term assessments, it may be advisable to change the models to use CR rather than TF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号