首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Signalized intersections have been identified as vehicle emission hotspots, where drivers decelerate, idle, and accelerate their vehicles in response to signal changes. Advanced traffic signal status warning systems (ATSSWSs) can be applied to reduce traffic emissions at intersections by mitigating unnecessary braking and acceleration. In this study, two types of ATSSWSs, variable message sign (VMS) based and vehicle-to-infrastructure (V2I) based, were designed, and their environmental effectiveness was evaluated through driving simulator-based experiments. Three scenarios were designed and tested: (1) baseline without an ATSSWS, (2) with the VMS-based ATSSWS, and (3) with the V2I-based ATSSWS. The Motor Vehicle Emission Simulator model was used to evaluate and compare the environmental effectiveness of these two types of ATSSWSs. The results indicate that the proposed ATSSWSs can reduce traffic emissions at signalized intersections. In particular, the V2I-based ATSSWS can substantially reduce CO2, NOx, CO, and HC emissions. The results will help transportation practitioners with implementing advanced driver information systems and decision making on emission reduction policies.

Implications: Signalized intersection has been identified as one of hottest spots for vehicle emissions where signal control causes vehicles to frequently decelerate, idle, and accelerate. Advanced Traffic Signal Status Warning Systems (ATSSWS) can be applied to reduce traffic emission at intersections by decreasing vehicles’ unnecessary brakes and accelerations. The results of this study will assist transportation practitioners in implementing advanced driver information systems and making decisions on emission reduction policies.  相似文献   


3.
Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

Implications: Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.  相似文献   


4.
The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation.

Implications: This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.  相似文献   


5.
Converting a congested high-occupancy vehicle (HOV) lane into a high-occupancy toll (HOT) lane is a viable option for improving travel time reliability for carpools and buses that use the managed lane. However, the emission impacts of HOV-to-HOT conversions are not well understood. The lack of emission impact quantification for HOT conversions creates a policy challenge for agencies making transportation funding choices. The goal of this paper is to evaluate the case study of before-and-after changes in vehicle emissions for the Atlanta, Georgia, I-85 HOV/HOT lane conversion project, implemented in October 2011. The analyses employed the Motor Vehicle Emission Simulator (MOVES) for project-level analysis with monitored changes in vehicle activity data collected by Georgia Tech researchers for the Georgia Department of Transportation (GDOT). During the quarterly field data collection from 2010 to 2012, more than 1.5 million license plates were observed and matched to vehicle class and age information using the vehicle registration database. The study also utilized the 20-sec, lane-specific traffic operations data from the Georgia NaviGAtor intelligent transportation system, as well as a direct feed of HOT lane usage data from the State Road and Tollway Authority (SRTA) managed lane system. As such, the analyses in this paper simultaneously assessed the impacts associated with changes in traffic volumes, on-road operating conditions, and fleet composition before and after the conversion. Both greenhouse gases and criteria pollutants were examined.

Implications: A straight before-after analysis showed about 5% decrease in air pollutants and carbon dioxide (CO2). However, when the before-after calendar year of analysis was held constant (to account for the effect of 1 yr of fleet turnover), mass emissions at the analysis site during peak hours increased by as much as 17%, with little change in CO2. Further investigation revealed that a large percentage decrease in criteria pollutants in the straight before-after analysis was associated with a single calendar year change in MOVES. Hence, the Atlanta, Georgia, results suggest that an HOV-to-HOT conversion project may have increased mass emissions on the corridor. The results also showcase the importance of obtaining on-road data for emission impact assessment of HOV-to-HOT conversion projects.  相似文献   


6.
The objective of this paper is to develop and demonstrate a fuel-based approach for emissions factor estimation for highway paving construction equipment in China for better accuracy. A highway construction site in Chengdu was selected for this study with NO emissions being characterized and demonstrated. Four commonly used paving equipment, i.e., three rollers and one paver were selected in this study. A portable emission measurement system (PEMS) was developed and used for emission measurements of selected equipment during real–world highway construction duties. Three duty modes were defined to characterize the NO emissions, i.e., idling, moving, and working. In order to develop a representative emission factor for these highway construction equipment, composite emission factors were estimated using modal emission rates and the corresponding modal durations in the process of typical construction duties. Depending on duty mode and equipment type, NO emission rate ranged from 2.6–63.7mg/s and 6.0–55.6g/kg–fuel with the fuel consumption ranging from 0.31–4.52 g/s correspondingly. The NO composite emission factor was estimated to be 9–41mg/s with the single-drum roller being the highest and double-drum roller being the lowest and 6–30g/kg-fuel with the pneumatic tire roller being the highest while the double-drum roller being the lowest. For the paver, both time-based and fuel consumption-based NO composite emission rates are higher than all of the rollers with 56mg/s and 30g/kg-fuel, respectively. In terms of time–based quantity, the working mode contributes more than the other modes with idling being the least for both emissions and fuel consumption. In contrast, the fuel-based emission rate appears to have less variability in emissions. Thus, in order to estimate emission factors for emission inventory development, the fuel-based emission factor may be selected for better accuracy.

Implications: The fuel-based composite emissions factors will be less variable and more accurate than time-based emission factors. As a consequence, emissions inventory developed using this approach will be more accurate and practical.  相似文献   


7.
Wireless communication systems have been broadly applied in various complicated traffic operations to improve mobility and safety on roads, which may raise a concern about the implication of the new technology on vehicle emissions. This paper explores how the wireless communication systems improve drivers’ driving behaviors and its contributions to the emission reduction, in terms of Operating Mode (OpMode) IDs distribution used in emission estimation. A simulated work zone with completed traffic operation was selected as a test bed. Sixty subjects were recruited for the tests, whose demographic distribution was based on the Census data in Houston, Texas. A scene of a pedestrian’s crossing in the work zone was designed for the driving test. Meanwhile, a wireless communication system called Drivers Smart Advisory System (DSAS) was proposed and introduced in the driving simulation, which provided drivers with warning messages in the work zone. Two scenarios were designed for a leading vehicle as well as for a following vehicle driving through the work zone, which included a base test without any wireless communication systems, and a driving test with the trigger of the DSAS. Subjects’ driving behaviors in the simulation were recorded to evaluate safety and estimate the vehicle emission using the Environmental Protection Agency (EPA) released emission model MOVES. The correlation between drivers’ driving behavior and the distribution of the OpMode ID during each scenario was investigated. Results show that the DSAS was able to induce drivers to accelerate smoothly, keep longer headway distance and stop earlier for a hazardous situation in the work zone, which driving behaviors result in statistically significant reduction in vehicle emissions for almost all studied air pollutants (p-values range from 4.10E-51 to 2.18E-03). The emission reduction was achieved by the switching the distribution of the OpMode IDs from higher emission zones to lower emission zones.

Implications: Transportation section is a significant source of greenhouse gas emissions. Many studies demonstrate that the wireless communication system dedicated for safety and mobility issues may contribute to the induction in vehicle emissions through changing driving behaviors. An insight into the correlation between the driving behaviors and the distribution of Operating Mode (OpMode) IDs is essential to enhance the emission reduction. The result of this study shows that with a Drivers Smart Advisory System (DSAS) drivers accelerated smoothly and stopped earlier for a hazardous situation, which induce the switch of the OpMode IDs from high emission zones to lower emission zones.  相似文献   


8.
The U.S. Environmental Protection Agency’s (EPA) Motor Vehicle Emission Simulator (MOVES) is required by the EPA to replace Mobile 6 as an official on-road emission model. Incorporated with annual vehicle mile traveled (VMT) by Highways Performance Monitoring System (HPMS) vehicle class, MOVES allocates VMT from HPMS to MOVES source (vehicle) types and calculates emission burden by MOVES source type. However, the calculated running emission burden by MOVES source type may be deviated from the actual emission burden because of MOVES source population, specifically the population fraction by MOVES source type in HPMS vehicle class. The deviation is also the result of the use of the universal set of parameters, i.e., relative mileage accumulation rate (relativeMAR), packaged in MOVES default database. This paper presents a novel approach by adjusting the relativeMAR to eliminate the impact of MOVES source population on running exhaust emission and to keep start and evaporative emissions unchanged for both MOVES2010b and MOVES2014. Results from MOVES runs using this approach indicated significant improvements on VMT distribution and emission burden estimation for each MOVES source type. The deviation of VMT by MOVES source type is minimized by using this approach from 12% to less than 0.05% for MOVES2010b and from 50% to less than 0.2% for MOVES2014 except for MOVES source type 53. Source type 53 still remains about 30% variation. The improvement of VMT distribution results in the elimination of emission burden deviation for each MOVES source type. For MOVES2010b, the deviation of emission burdens decreases from ?12% for particulate matter less than 2.5 μm (PM2.5) and ?9% for carbon monoxide (CO) to less than 0.002%. For MOVES2014, it drops from 80% for CO and 97% for PM2.5 to 0.006%.

Implications: This approach is developed to more accurately estimate the total emission burdens using EPA’s MOVES, both MOVES2010b and MOVES2014, by redistributing vehicle mile traveled (VMT) by Highways Performance Monitoring System (HPMS) class to MOVES source type on the basis of comprehensive traffic study, local link-by-link VMT broken down into MOVES source type.  相似文献   

9.
Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20–60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories.

Implications: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.  相似文献   


10.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


11.
Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical “fingerprint” associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions.

Implications: Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government’s goal of reducing methane emissions by 40–45% below 2012 levels within 8 yr.  相似文献   


12.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   

13.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


14.
Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NOx]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NOx are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages.

Implications: Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.  相似文献   


15.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


16.
Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.  相似文献   

17.
Vale Canada Limited owns and operates a large nickel smelting facility located in Sudbury, Ontario. This is a complex facility with many sources of SO2 emissions, including a mix of source types ranging from passive building roof vents to North America's tallest stack. In addition, as this facility performs batch operations, there is significant variability in the emission rates depending on the operations that are occurring. Although SO2 emission rates for many of the sources have been measured by source testing, the reliability of these emission rates has not been tested from a dispersion modeling perspective. This facility is a significant source of SO2 in the local region, making it critical that when modeling the emissions from this facility for regulatory or other purposes, that the resulting concentrations are representative of what would actually be measured or otherwise observed. To assess the accuracy of the modeling, a detailed analysis of modeled and monitored data for SO2 at the facility was performed. A mobile SO2 monitor sampled at five locations downwind of different source groups for different wind directions resulting in a total of 168 hr of valid data that could be used for the modeled to monitored results comparison. The facility was modeled in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model) using site-specific meteorological data such that the modeled periods coincided with the same times as the monitored events. In addition, great effort was invested into estimating the actual SO2 emission rates that would likely be occurring during each of the monitoring events. SO2 concentrations were modeled for receptors around each monitoring location so that the modeled data could be directly compared with the monitored data. The modeled and monitored concentrations were compared and showed that there were no systematic biases in the modeled concentrations.

Implications:

This paper is a case study of a Combined Analysis of Modelled and Monitored Data (CAMM), which is an approach promulgated within air quality regulations in the Province of Ontario, Canada. Although combining dispersion models and monitoring data to estimate or refine estimates of source emission rates is not a new technique, this study shows how, with a high degree of rigor in the design of the monitoring and filtering of the data, it can be applied to a large industrial facility, with a variety of emission sources. The comparison of modeled and monitored SO2 concentrations in this case study also provides an illustration of the AERMOD model performance for a large industrial complex with many sources, at short time scales in comparison with monitored data. Overall, this analysis demonstrated that the AERMOD model performed well.  相似文献   


18.
This paper develops a typical driving cycle for buses in Hanoi that does not require the deconstruction of the natural driving patterns. Real velocity–time data were collected along 15 routes in the inner city. The raw velocity–time series were preprocessed to remove errors, and smooth and denoise the data. These data, then, were tested for stationary behavior before being used in the construction of the driving cycle based on Markov chain theory. The 14 representative parameters of the driving cycle, including vehicle-specific power, which were extracted from 33 driving cycle parameters using the hierarchical agglomerative clustering method, were used to integrate the features of realistic driving patterns into the typical driving cycle. The conformity of the developed driving cycle with the real-world driving data was evaluated by the speed–acceleration frequency distribution (SAFD). A typical driving cycle for buses in Hanoi with a SAFD of 13.2% was developed. This is the first driving cycle developed for buses in Vietnam.

Implications: A typical driving cycle was developed for the first time for buses in Hanoi. With the deviation in speed-acceleration frequency distribution (SAFD) reaching to 13.2%, the developed driving cycle reflects well the overall real-world driving data in the city. This driving cycle, therefore, can be applied for the development of the country-specific emission factors and emission inventories for buses which are a very good tool as well as useful information for integrated air quality management in Hanoi.  相似文献   


19.
The Desert Research Institute conducted an on-road mobile source emission study at a traffic tunnel in Van Nuys, California, in August 2010 to measure fleet-averaged, fuel-based emission factors. The study also included remote sensing device (RSD) measurements by the University of Denver of 13,000 vehicles near the tunnel. The tunnel and RSD fleet-averaged emission factors were compared in blind fashion with the corresponding modeled factors calculated by ENVIRON International Corporation using U.S. Environmental Protection Agency's (EPA's) MOVES2010a (Motor Vehicle Emissions Simulator) and MOBILE6.2 mobile source emission models, and California Air Resources Board's (CARB's) EMFAC2007 (EMission FACtors) emission model. With some exceptions, the fleet-averaged tunnel, RSD, and modeled carbon monoxide (CO) and oxide of nitrogen (NOx) emission factors were in reasonable agreement (±25%). The nonmethane hydrocarbon (NMHC) emission factors (specifically the running evaporative emissions) predicted by MOVES were insensitive to ambient temperature as compared with the tunnel measurements and the MOBILE- and EMFAC-predicted emission factors, resulting in underestimation of the measured NMHC/NOx ratios at higher ambient temperatures. Although predicted NMHC/NOx ratios are in good agreement with the measured ratios during cooler sampling periods, the measured NMHC/NOx ratios are 3.1, 1.7, and 1.4 times higher than those predicted by the MOVES, MOBILE, and EMFAC models, respectively, during high-temperature periods. Although the MOVES NOx emission factors were generally higher than the measured factors, most differences were not significant considering the variations in the modeled factors using alternative vehicle operating cycles to represent the driving conditions in the tunnel. The three models predicted large differences in NOx and particle emissions and in the relative contributions of diesel and gasoline vehicles to total NOx and particulate carbon (TC) emissions in the tunnel.

Implications: Although advances have been made to mobile source emission models over the past two decades, the evidence that mobile source emissions of carbon monoxide and hydrocarbons in urban areas were underestimated by as much as a factor of 2–3 in past inventories underscores the need for on-going verification of emission inventories. Results suggest that there is an overall increase in motor vehicle NMHC emissions on hot days that is not fully accounted for by the emission models. Hot temperatures and concomitant higher ratios of NMHC emissions relative to NOx both contribute to more rapid and efficient formation of ozone. Also, the ability of EPA's MOVES model to simulate varying vehicle operating modes places increased importance on the choice of operating modes to evaluate project-level emissions.  相似文献   

20.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号