首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Japan’s national park system constitutes a potentially viable mechanism for securing local community participation and building stakeholder consensus for sustainable park management, although the potential of this system is yet to be fully maximized. This article gives an overview of the system of protecting natural resources in Japan, focusing on the national park system. Parks are managed by zoning and regulation, which is unique in that land is not “set aside” for nature conservation, but designated as national park wherever the need to preserve “scenic beauty” has been recognized, regardless of land ownership or land use. Although resource conservation under this system has been problematic, it has advantages, especially in terms of community participation. This article demonstrates that in order to reach the system’s potential, the park authority must act as coordinator of stakeholders and facilitator of bottom-up approaches to decision-making. In order to do this, steps that must be taken include the following: identifying the various stakeholders in park management and defining the “local community”; clarifying the roles and responsibilities of each stakeholder; and supporting consensus-building among stakeholders regarding the objectives and long-term vision of each park. By taking these steps, it would be possible to build a park management system that overrides government boundaries and involves local communities. This will enable the park authority to address the challenges facing Japan’s complex system of conserving natural resources, and move towards sustainable management of natural resources in Japan.  相似文献   

2.
In recent decades, many changes have occurred in the approach to financing and operating water services in developing countries. The demand‐responsive approach is now adopted in many countries in a context of donor‐supported decentralization processes, which gives more responsibility to end users. However, the government's responsibility at different levels is enforced by the international recognition of the human right to water. This paper examines specific actions that build the role of local government authorities in this scenario. A collaboration between an international NGO and a rural district in Tanzania from 2006 to 2009 is used as an action research case study that is representative of local capacity‐building needs in decentralized contexts and rural areas. Three main challenges were detected: i) lack of reliable information; ii) poor allocation of resources in terms of equity; and iii) lack of long‐term community management support from the district. Two mechanisms were established: i) water point mapping as a tool for information and planning; and ii) a District Water and Sanitation Unit Support (DWUS) for community management. The results show how the framework provided by the goal of human right to water helps to define useful strategies for equity‐oriented planning and post‐project support at the local level.  相似文献   

3.
In mountainous landscapes with high climatic and geomorphic variability, how do rural land uses and exurbanization alter hydrology and water quality? We evaluated effects of rural land use and exurbanization on streamflows, suspended sediment concentrations and loads, specific conductance, and summer water temperatures in 12 streams and rivers within the Upper Little Tennessee River basin in the southern Appalachian Mountains. Eleven streams featured low levels of development (>61% forest cover) but differed in land use patterning, basin size, annual precipitation, and watershed morphology. One urban stream, located within the largest town in the basin, provided the high development comparative endpoint. Even low levels of rural development and exurbanization were associated with substantial increases in suspended sediment concentrations, sediment loads, and summer stream temperature daily maxima and diurnal variation. Observed summer temperature increases were much larger than would be expected due to global climate change over the next century. Specific conductance was idiosyncratic among the smaller streams. These water quality changes were not accompanied by streamflow changes that were discernible amid the high natural variation in precipitation and geomorphology. The water quality findings suggest the need for applying the best management practices, including riparian buffers, to even low levels of rural development.  相似文献   

4.
ABSTRACT. The Nation has entered a new era of water quality management in which land use policy and regulation must assume an increasingly important role. The benefits of tertiary and advanced waste treatment may be offset by contradictory land use and pollution from land runoff. Unless land use planning and controls are included in water quality management, land-imposed constraints on water quality can be anticipated. Pollution from major types of land runoff are reviewed with respect to sources, effects, and control procedures. Emphasis is given to land use practices and controls. The crucial issue with regard to the latter is lack of land use policies at federal, state, and local levels. State legislation establishing guidelines and minimum standards for land use regulation by local government is required. The dependency of water quality on land use points to the fallacy of attempting to provide for comprehensive water pollution control outside the context of comprehensive land-water resource planning and management.  相似文献   

5.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

6.
Impact of Urban Sprawl on Water Quality in Eastern Massachusetts,USA   总被引:5,自引:0,他引:5  
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.  相似文献   

7.
Institutions are the rules and norms that guide societal behavior. As societies evolve—with more diverse economies, increased populations and incomes, and more water scarcity—new and more complex water management institutions need to be developed. This evolution of water management institutions may also be observed across different constituencies, with different societal needs, in the same time period. The Red River of the North basin is particularly well suited for research on water management issues. A key feature of water management in the Red River Basin is the presence of three completely different sets of water law. Minnesota’s water law is based upon riparian rights. North Dakota’s water law is based upon prior appropriation. Manitoba has a system of water allocation that features provincial control. Because the basin is fairly homogeneous in terms of land use and geographic features, its institutional diversity makes this an excellent case study for the analysis of local water institutions. This article reviews the local water management institutions in the Red River Basin and assesses the ongoing institutional evolution of local water management.  相似文献   

8.
In order to prevent salinisation of the streams of the Riverine Plain of the Murray-Darling Basin in southern Australia, evaporation basins are used to dispose of saline irrigation drainage water. Local on-farm (individual landholder) and community (shared between multiple landholders) basins are increasingly being used to prevent export of salt outside irrigation districts. There are questions regarding the availability of land suitable for these basins and their impact on the surrounding environment. We describe the use of currently available spatial data to assist in regional planning for the environmentally safe use of these basins. A GIS-based approach was developed using suitability criteria expected to minimise the risk of off-site effects of basin leakage. The criteria were proximity to surface water features, urban areas and infrastructure, water table depth and salinity, and soil hydraulic conductivity. The approach was applied to all of the major irrigation districts at 1:250,000, the scale at which data are available over the entire Riverine Plain. Confidence in well-defined parameters such as proximity to infrastructure, urban areas and surface water features was higher than for those involving interpolated point data such as water table depth, salinity, and hydraulic conductivity. Most critically, hydraulic conductivity, the most important factor for basin leakage, was found to be unreliable at this scale. Use of higher resolution data (up to 1:100,000) available for two of the irrigation districts improved confidence in both water table depth and salinity but not in hydraulic conductivity. Despite these limitations, it was found that: (i) on-farm basins can only be used on an opportunistic basis in the eastern irrigation districts, but can be widely used in the western districts; (ii) community basins can be used anywhere there is suitable land; and (iii) the results raise serious questions as to whether there is enough suitable land in the eastern districts to dispose of all of the drainage water that is produced.  相似文献   

9.
Modeling the relationship between land use and surface water quality   总被引:64,自引:0,他引:64  
It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic effects of land use is very useful. It can provide guidelines not only for resource managers in restoring our aquatic ecosystems, but also for local planners in devising viable and ecologically-sound watershed development plans, as well as for policy makers in evaluating alternate land management decisions.  相似文献   

10.
Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution ‘barrier’ in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocussing the next round of catchment management strategies to achieve water quality targets.  相似文献   

11.
Rural communities in sub‐Saharan Africa rely upon provisioning ecosystem services (ES) to support their livelihoods, yet in areas where rapid land use change is occurring the relationship between environmental change, provisioning ES availability and livelihoods is not fully understood. This relationship is explored here within a typical rural miombo woodland landscape in south‐west Tanzania, which is undergoing rapid land use change due to expanding tobacco cultivation. The types of provisioning ES used, who uses them, changes in their availability, and the possible future impacts of these changes were explored using a mixed‐method approach. Our findings identify 19 provisioning ES used by households regardless of economic status. Firewood, building materials, and fresh water are used by almost all households, and these are perceived to be declining in availability. Households identified this as a negative environmental impact of land use change and that provisioning ES loss would be ‘bad’ for their households. Given the multi‐purpose nature of miombo woodlands, an adaptive co‐management approach, which can achieve multiple objectives through encouraging participation, learning, and empowerment of local communities, could be an appropriate strategy to achieve sustainable land use management and maintain the provision of ES within miombo woodland landscapes of sub‐Saharan Africa.  相似文献   

12.
To demonstrate the benefits of water conservation at the household level in regional Victoria in Australia, a family house “Sharland Oasis” was designed and built according to an ecologically sustainable design for improved water and energy efficiency. This study has demonstrated that the combined use of alternative water supplies together with water efficient appliances can save up to 77% of total potable water use compared to the average 1990s household water use in the same region considering the location and differing in water use approach. The use of rainwater inside the home alone saved up to 40% of potable water use. In addition to the water savings, there is a significant wastewater discharge saving achieved through the use of water conservation strategies and greywater reuse. A community survey undertaken in regional Victoria revealed that community receptivity for reusing greywater is highest for uses, such as watering gardens and flushing toilets; but it progressively decreased with increasing personal contact with greywater. Positive perception of greywater reuse needs to be encouraged through programs targeted at developing resources, skills and motivation for new water reuse practices and technologies, across a diverse range of social groups.  相似文献   

13.
The Water Poverty Index: Development and application at the community scale   总被引:17,自引:1,他引:17  
The article details the development and uses of the water poverty index (WPI). The index was developed as a holistic tool to measure water stress at the household and community levels, designed to aid national decision makers, at community and central government level, as well as donor agencies, to determine priority needs for interventions in the water sector. The index combines into a single number a cluster of data directly and indirectly relevant to water stress. Subcomponents of the index include measures of: access to water; water quantity, quality and variability; water uses (domestic, food, productive purposes); capacity for water management; and environmental aspects.
The WPI methodology was developed through pilot projects in South Africa, Tanzania and Sri Lanka and involved intensive participation and consultation with all stakeholders, including water users, politicians, water sector professionals, aid agency personnel and others. The article discusses approaches for the further implementation of the water poverty index, including the possibilities of acquiring the necessary data through existing national surveys or by establishing interdisciplinary water modules in school curricula. The article argues that the WPI fills the need for a simple, open and transparent tool, one that will appeal to politicians and decision makers, and at the same time can empower poor people to participate in the better targeting of water sector interventions and development budgets in general.  相似文献   

14.
Farmers in the Sahel have been acknowledged for reclaiming degraded lands and improving food security by ingeniously modifying traditional agroforestry, water, and soil management practices. Despite the advantages offered by this range of farming techniques, their adoption rate is influenced by several factors. Using multivariate probit models and a correlation coefficient, this article examines the factors influencing the adoption of five land management practices based on 220 household and 40 farm surveys in four adjacent rural communities in southern Burkina Faso. The model results indicate that household labor force, education of household head, land tenure security, livestock holding, and membership in farmers’ groups influence the adoption of zaï practice, composting, improved fallow, stone bunds, and live hedges. However, two of the surveyed factors ‐ number of farms and visit by agricultural extension staff during the 12 months prior to the survey ‐ were not significant. Furthermore, a significant correlation was found between different land management practices, e.g., the decision to practice zaï is significantly linked to that of live hedges and composting. Zaï practice and stone bunds are considered labor intensive, which explains their significant correlations with household labor force at the 1% and 5% levels of significance, respectively.  相似文献   

15.
This paper presents a qualitative assessment of the participatory water management strategies implemented at the community level in rural Mali through a water supply project — The West Africa Water Initiative (WAWI) — coordinated by World Vision International, a non‐governmental and humanitarian organization. Data for the study were generated through a combination of primary and secondary sources in three villages. Results of the study indicate that while community‐based rural water supply is a positive step in responding to the needs of rural Malians, the installation of boreholes with hand pumps informed merely by consultative participatory approaches and limited extension involvement will not necessarily proffer sustainable rural water supply in the region. A “platform” approach to rural water supply management that can mobilize the assets and insights of different social actors to influence decision making at all stages, including the design and choice‐of‐technology stages, in water supply interventions is instead advocated.  相似文献   

16.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   

17.
The model can help in examining the relative sensitivity of water-quality variables to alterations in land use made at varying distances from the stream channel. The model also shows the importance of streamside management zones, which are key to maintenance of stream water quality. The linkage model can be considered a first step in the integration of GIS and ecological models. The model can then be used by local and regional land managers in the formulation of plans for watershed-level management.  相似文献   

18.
Land use planning is an important element of the integrated watershed management approach. It not only influences the environmental processes such as soil and stream bed erosion, sediment and nutrient concentrations in streams, quality of surface and ground waters in a watershed, but also affects social and economic development in that region. Although its importance in achieving sustainable development has long been recognized, a land use planning methodology based on a systems approach involving realistic computational modeling and meta-heuristic optimization is still lacking in the current practice of integrated watershed management. The present study proposes a new approach which attempts to combine computational modeling of upland watershed processes, fluvial processes and modern heuristic optimization techniques to address the water-land use interrelationship in its full complexity. The best land use allocation is decided by a multi-objective function that minimizes sediment yields and nutrient concentrations as well as the total operation/implementation cost, while the water quality and the production benefits from agricultural exploitation are maximized. The proposed optimization strategy considers also the preferences of land owners. The runoff model AnnAGNPS (developed by USDA), and the channel network model CCHE1D (developed by NCCHE), are linked together to simulate sediment/pollutant transport process at watershed scale based on any assigned land use combination. The greedy randomized adaptive Tabu search heuristic is used to flip the land use options for finding an optimum combination of land use allocations. The approach is demonstrated by applying it to a demonstrative case study involving USDA Goodwin Creek experimental watershed located in northern Mississippi. The results show the improvement of the tradeoff between benefits and costs for the watershed, after implementing the proposed optimal land use planning.  相似文献   

19.
As in many fen land regions in East Germany, long-standing intensive arable farming—enabled by reclamation—has caused soil deterioration and high water runoff in the Schraden region. The more than ten years of economic and political transformation that followed the breakdown of the socialist regime has worsened the situation and even added new problems. The visible consequences are droughts in the summer, waterlogged plots in the spring, and worn-down water management facilities that operate in an uncoordinated or even unauthorized way. Given the local public-good character of some features of the fen land, the common-pool character of the ecosystems intermittently scarce resource water, and the conflicting interests of regional stakeholders, it is argued that the reallocation of property rights over reclamation systems, together with ineffective coordination mechanisms, have caused the physical and institutional failure of the water management system and so impeded appropriate land use. Note: This version was published online in June 2005 with the cover date of August 2004.  相似文献   

20.
Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters “Agriculture” and “Forest”, showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号