首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine-scale movement patterns in penaeid prawns are rarely observed in situ, but are essential in understanding habitat use, foraging, and anti-predator behaviour. Acoustic telemetry was applied to examine the activity, space utilization, and habitat use of the eastern king prawn Penaeus (Melicertus) plebejus, at small temporal and spatial scales. Tracking of sub-adult P. plebejus (n = 9) in Wallagoot Lake (36.789°S, 149.959°E; 23 April–12 May 2009) and calculation of a minimum activity index (MAI) revealed high variation in activity rates across diel periods and in different habitats. Elevated activity rates and movement indicated foraging in unvegetated habitats during the night. Areas within the 95 and 50% space utilization contours averaged 2,654.1 ± 502.0 and 379.9 ± 103.9 m2, respectively, and there was a significant negative relationship between these areas and prawn activity rates in unvegetated habitats. This study provides the first estimates of prawn activity rates and space utilization in the field. Application of acoustic telemetry can increase knowledge of prawn movements and their interactions with other marine species in different habitats.  相似文献   

2.
The cDNA sequence coding for tauropine dehydrogenase (TaDH) [belonging to the family of opine dehydrogenases] has been determined. Using the demosponge Suberites domuncula, we describe for the first time the tauropine dehydrogenase gene (of length 2,992 kb) from a eukaryote, consisting of two introns flanked by three exons. Moreover, two allelic variants have been identified, which are present in the different specimens either in a homozygotic or in a heterozygotic way; the data suggest an intermediary type of heritance. Phylogenetic analyses indicate that S. domuncula TaDH is only distantly related to the opine dehydrogenases from marine invertebrates; rather it comprises high sequence similarity to bacterial ornithine cyclodeaminases (OCD). In addition, expression studies revealed that the steady-state level of TaDH dropped drastically in animals, which had been exposed to elevated aeration. Antibodies raised against the recombinant sponge TaDH were used to demonstrate that S. domuncula expresses high levels of this enzyme in almost all cells. If tissue samples were kept under additional aeration no immuno-signals could be identified. A strong accumulation of the enzyme was seen around the bacteria, existing in bacteriocytes, indicating that under aerobic conditions the bacteria might produce taurine. These data suggest involvement of the sponge TaDH in the final step of the glycolytic pathway, more specifically, in regeneration of NAD(+) under anaerobic conditions. Furthermore, potential mutual influences between bacteria and sponge are discussed, claiming a horizontal gene transfer of the gene from a bacterium to the sponge. The following sequences from Suberites domuncula have been deposited (EMBL/GenBank): the cDNA encoding the tauropine [(carboxyethyl)-taurine/derived from sulfhydryl-amino acids] dehydrogenase (SD_TaDH) under AM712888; the corresponding gene under AM712889; and the fragments of the sponge-associated bacteria comprising the opine dehydrogenase domain: SUBDO_BAC1 (AM712890), SUBDO_BAC2 (AM712891), SUBDO_BAC3 (AM712892), SUBDO_BAC5 (AM712894), SUBDO_BAC6 (AM712895), SUBDO_BAC7 (AM712896), SUBDO_BAC8 (AM712897) and SUBDO_BAC9 (AM712898).  相似文献   

3.
Fernando Gómez 《Marine Biology》2007,151(5):1899-1906
The morphology and distribution of the diatoms Chaetoceros tetrastichon and Ch. dadayi as epiphytes on the loricae of the tintinnids Eutintinnus apertus and E. pinguis investigated in the open waters of the Pacific Ocean. The Eutintinnus–Chaetoceros consortia was encountered in 38 of the 52 sampling stations from 34°N to 33°S, and together were among represented the most wide-spread species. The abundance was low with a maximum of 32 consortia l−1 and E. apertus was often the most abundant species of the genus. The free-living Eutintinnus congeneric species showed a wider vertical distribution, whereas E. apertus–Chaetoceros tended to be near the surface. The success of E. apertus in consortium with Chaetoceros may be due to increase of the clearance rate and/or the lower susceptibility to predation. Chaetoceros modifies its morphology to adapt the epiphytic life, especially Ch. dadayi. The shorter curved setae may facilitate the transfer to the lorica of the daughter tintinnid after the cell division. The free-living Ch. tetrastichon and Ch. dadayi are very rare and Chaetoceros remained attached to empty loricae or encysted tintinnid cells. This suggests that the Eutintinnus–Chaetoceros consortium is obligate for the success of the diatom and renders the tintinnid more competitive versus congeneric species.  相似文献   

4.
Like many other benthic infaunal invertebrates, spionid polychaetes often lose portions of their bodies to predators, which affects their activities. Feeding palp loss and tail loss have been studied in several spionids, but the capacity for anterior tissue regeneration has not been compared in different species. The present study examines anterior tissue regeneration in two species, Dipolydora quadrilobata (Jacobi 1883) and Pygospio elegans Claparède 1863, in two laboratory experiments. Tissue removal treatments included removal of palps only, removal of anterior tissue through the first setiger, anterior tissue through the fifth setiger, all anterior tissue through half of the gill-bearing setigers, and all anterior tissue through the last gill-bearing setiger. Regeneration was monitored by capturing images of the worms and digitizing the area of regenerated anterior tissue or counting the number of segments that grew over time. Worms of both species regenerated anterior tissue regardless of the amount removed. Morphogenesis during regeneration followed a similar pattern in these two species regardless of the amount of anterior tissue lost, progressing from wound healing to formation of a recognizable prostomium and peristomium (“head”) by 6 days post-ablation. Palp and setal growth, addition of segments, and formation of nuchal organs and the ciliated food groove followed so that worms appeared to have re-grown “normal,” but smaller, “heads” and palps by 9–12 days following ablation. Over the course of 16 days, worms that lost more segments regenerated less tissue relative to their initial intact size and did so more slowly. There was no significant palp growth during the first 3 days following ablation. Rate of segment addition was directly related to the degree of tissue loss in D. quadrilobata. P. elegans added segments at similar rates whether 50 or 70% of the original segments was removed.  相似文献   

5.
Phylogenetic analyses have demonstrated that nonfeeding larvae have evolved from feeding larvae many times among marine invertebrates. In light of this observation, it is surprising that an intermediate strategy, a larva that can feed but is provisioned with enough energy to metamorphose without acquiring exogenous food (i.e., facultative planktotrophy), is rare. A hypothesis for the lack of facultative planktotrophic species among marine invertebrates is that the transition from feeding to nonfeeding is rapid due to this intermediate stage being evolutionarily unstable. Evidence that would support this hypothesis is if species with facultative planktotrophy have reduced food assimilation when compared with obligate planktotrophs. We studied a species with facultative planktotrophic larvae, Clypeaster rosaceus, that is very near the boundary between facultative and obligatory planktotrophy, to answer two questions: (1) does feeding during the larval stage result in energy gains in larval or juvenile stages and (2) if not, are larvae capable of assimilating exogenous food at all. Our measurements of energetics in larval and juvenile stages show that C. rosaceus larvae accumulate very little if any energy when fed, but stable isotope data indicate that larvae are able to assimilate some food. Our results are consistent with similar studies on facultative planktotrophic larvae suggesting poor food assimilation and rapid loss of larval feeding after a population evolves the ability to reach metamorphosis without feeding (lecithotrophy).  相似文献   

6.
The aim of this study was to investigate how the worm Polydora sp., which induces oysters into creating mud blisters in response to an irritation within their shells, could interfere with the oyster Crassostrea gigas physiology and ethology. The impact was characterized by studying two groups of oysters (non-parasitized and parasitized) during a 30 days period: (1) the animal behaviour by analysing their valve activity (valvometry), and (2) the animal respiratory physiology by measuring in vivo the oxygen partial pressure and the specific oxygen consumption in selected tissues (heart, fast and slow adductor muscle). We also researched a putative impact on the expression of several oxidative stress genes at the heart level. Our results show that Polydora sp. is clearly an oyster’s parasite as it induces a decrease in oyster growth according to the infestation intensity. Moreover, it modifies the behaviour and the respiratory physiology of the molluscs. Infested animals opened more frequently but for less time and their level of blood oxygenation was systematically higher than healthy molluscs. These high levels of oxygenation had no effect on the oxidative metabolism of the tissues studied but they induced oxidative stress. Indeed, the superoxide dismutase gene showed a threefold increase in expression in the heart of infested oysters. A putative scenario of the weakening mechanism is proposed.  相似文献   

7.
Grapsoid crabs of the genera Planes and Plagusia are commonly referred to as “rafting crabs” due to their propensity to live on flotsam and pelagic marine animals. Planes minutus and Planes major (=Planes cyaneus) are epibionts of sea turtles. Occurrences of grapsoid crabs in the genera Planes and Plagusia were evaluated on a total of 27 olive ridley sea turtles, Lepidochelys olivacea, from the eastern tropic Pacific (1998–2001) and the Hawaiian Islands (2002) captured in July–December each year. This is the first report of Planes marinus and Plagusia squamosa on sea turtles, and of P. major, P. marinus, and P. squamosa in sympatry on a confined substrate. Stomach content analyses showed P. major and P. marinus consumed a variety of neuston and marine vegetation, with the former consuming considerably more animal material. Epibiotic P. squamosa consumed mostly plant material. The three Planes species had distinctive differences in gastric mill tooth morphology. The versatile mouthparts of P. marinus are described and resemble those of their congeners. Most female P. major and P. marinus collected were ovigerous and present in all survey months.  相似文献   

8.
The maternally inherited bacterium Wolbachia pipientis generates strong reproductive incompatibilities between uninfected females and infected males (cytoplasmic incompatibility), significantly reducing both female and male reproductive success. Such fitness costs are thought to place selective pressure on hosts to evolve pre-copulatory preferences for mating with compatible mates, thereby enabling them to avoid the reproductive incompatibilities associated with Wolbachia. Therefore, uninfected females are predicted to prefer mating with uninfected males, whereas infected males are predicted to prefer mating with infected females. Despite these predictions, previous investigations of pre-copulatory mate preferences in Wolbachia-manipulated Drosophila have not found evidence of female preference for uninfected or compatible males. However, none of these studies utilised a design where focal individuals are provided with a simple choice in a relatively non-competitive situation. We examined both female and male pre-copulatory mate preference based on mate infection status in Drosophila simulans and D. melanogaster using simple choice assays involving between 30–50 replicates per treatment. Although we found no evidence of female pre-copulatory mate preferences in either species, male D. simulans exhibited some preference for mating with females of the same infection status. However, this preference was not evident when we repeated the experiment to confirm this finding. Consequently, we conclude that neither male nor female D. melanogaster and D. simulans exhibit significant Wolbachia-associated pre-copulatory mate preferences.  相似文献   

9.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The gametogenic periodicity of the cold seep mussel “Bathymodiolus” childressi was analysed from a time series of samples from depths of ∼ 650 m surrounding the Brine Pool cold seep on the continental slope of the northern Gulf of Mexico. Occasional samples were retrieved from Bush Hill and GC 234 for comparison. At the Brine Pool, both females and males showed strong reproductive periodicity with the initiation of gametogenesis from December to March, followed by a period of gamete growth or proliferation and spawning from October to February. Gametogenesis was synchronized at all three sites. Gametogenic periodicity appears to be correlated with surface production that peaks during the winter months. Downward flux of detritus during this period may provide food for the planktotrophic larvae and also supplementary nutrition for the adult, which has chemosynthetic bacterial symbionts but is also capable of filter feeding. Individuals in all three populations carried parasites and these were especially common at Bush Hill and GC234, where it is suggested they have a major impact on reproductive output.  相似文献   

11.
Jeff Shimeta 《Marine Biology》2009,156(12):2451-2460
Passive suspension feeders rely on surrounding flow to deliver food particles to them. Therefore, the classic conception of functional response (feeding rate vs. food concentration) may require modification to account for flow speed as a second independent variable. I compared the functional response of Polydora cornuta at different velocities and determined whether food capture was proportional to particle flux (concentration × velocity). To understand feeding responses at a mechanistic level, I measured the functional responses in terms of contact and capture rates and determined particle retention efficiency. Experiments were run separately with two sizes of food particles, and with juvenile or adult worms. For both worm sizes and both particle sizes, capture rate in weak flow was directly related to concentration, but in strong flow it was constant. Worms were therefore unable to benefit from abundant food when in strong flow. The critical velocity at which the capture rate became constant was lower for adult worms than for juvenile worms, and it was lower for small particles than for large particles. Retention efficiency was constant among all treatments, and the results for contact rate were essentially the same as for capture rate. Therefore, the mechanics of particle contact must explain the effects of velocity on the functional response. Contact rate was not a constant proportion of particle flux; treatments with similar fluxes yielded different contact rates depending on the strength of flow. The results appeared to be caused by a velocity-induced behavioral change in appendage posture that affects contact rates: in moderate flow, worms form their feeding palps into helical coils, which they tighten as the velocity increases. I suggest this behavior constrains suspension feeding rates and the mechanical selection between particle sizes when worms are in strong flow, and that the effect changes with ontogeny. Because the results are consistent with patterns in measured growth rates of P. cornuta, I hypothesize that this influence of velocity on the functional response can constrain growth and population dynamics in this species.  相似文献   

12.
Individual-level variation in resource use occurs in a broad array of vertebrate and invertebrate taxa and may have important ecological and evolutionary implications. In this study, we measured the degree of individual-level variation in prey preference of the hunting wasp Trypoxylon albonigrum, which inhabits the Atlantic Forest in southeastern Brazil. This wasp captures several orb-weaving spider genera to provision nests. Individuals consistently specialized on a narrow subset of the prey taxa consumed by the population, indicating the existence of significant individual-level variation in prey preferences. The population niche was broader in the wet season in terms of both prey size and taxa. In the case of prey size, the population niche expansion was achieved via increased individual niche breadths, whereas in the case of prey taxa, individual niches remained relatively constrained, and the population niche expanded via increased interindividual variation. The observed pattern suggests the possibility of functional trade-offs associated with the taxon of the consumed prey. The nature of the trade-offs remains unknown, but they are likely related to learning in searching and/or handling prey. We hypothesize that by specializing on specific prey taxa, individuals increase foraging efficiency, reducing foraging time and ultimately increasing reproductive success.  相似文献   

13.
The great fecundity and very high larval mortality of most marine invertebrates and fish make possible substantial variance in the number of offspring contributed by adults to subsequent generations. The reproductive success of such organisms may thus resemble a sweepstakes lottery, in which a minority of progenitors succeeds in replacing an entire population, while the majority fails to procreate. One specific prediction of this hypothesis, that genetic diversity of newly settled cohorts should be less than that of the adult population, is tested in the present study. Microsatellite DNA markers were examined in naturally spawned juvenile European flat oysters Ostrea edulis (L.), collected over a 12-day period in 1993 from the western Mediterranean Sea, near Sète, France (43°32′N, 3°56′E) and grown out for a period of up to 10 months. Variation in these juveniles was compared to that in a pooled sample of adults collected in 1994 from two locations (Thau Lagoon and Port St. Louis) that had statistically homogeneous allelic frequencies. Though nearly twice as large as the pooled adult sample, the juvenile sample had only 60% of the adult allelic diversity. Analyses of linkage disequilibrium and kinship, as well as estimation of the effective number of parents, suggested that 10–20 adults produced this juvenile cohort. This observation supports the hypothesis of sweepstakes reproductive success and suggests that partial inbreeding may occur even in species with large populations and dispersing planktonic larvae. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

14.
In this paper we describe a cryopreservation protocol followed by the culture of Symbiodinium sp. isolated from the Caribbean gorgonian Pseudopterogorgia elisabethae as a potential renewable source of the dinoflagellate symbiont. Four different freezing protocols were designed: a controlled cooling device designed to cool at 1°C/min, a three-step protocol (−20°C for 2 h, −70°C for 2 h, liquid nitrogen-LN2), a two-step protocol (−70°C for 2 h, LN2), and a one-step protocol (LN2). All cells were stored in LN2 after cryopreservation. The cryoprotective agents (CPA) used were ethanol (EtOH) and methanol (MeOH) at 10 and 20%, and seawater (FSW) was used as a control. Viability measurements using cell counts showed that all cryopreservation protocols were relatively successful, and no trends were observed regarding freezing protocol or CPA used. After 19 weeks in culture the viability of samples which had high biomass was determined by the fluorescent assay CellTiter Blue™. The most viable cultures were those cryopreserved by a two-step protocol using 20% MeOH or 20% EtOH as a CPA. A genetic examination of the DNA of these samples using Symbiodinium-specific PCR primers confirmed that the composition of the culture had not changed. For the first time, we report that Symbiodinium sp. isolated from a gorgonian can be cryopreserved and subsequently cultured successfully. Lory Z. Santiago-Vázquez and Nealie C. Newberger contributed equally to this publication.  相似文献   

15.
Habitat segregation among competing species is widespread yet very little is know how this is achieved in practice. In a case study, we examined short-term effects of conspecific and congeneric density on habitat selection in two competing marine isopod species, Idotea emarginata and Idotea baltica. Under semi-natural conditions in large outdoor cylindrical tanks (4 m high; volume 5.5 m3), animal groups of different size and composition had the choice between a set of relevant habitat samples (surface-floating seaweed, the water column, seaweed on the bottom). Habitat selection in both I. baltica and I. emarginata proved to be largely independent of conspecific density (level of intraspecific competition). In single-species treatments, both species showed a similar and stable pattern of distribution, with a clear preference for seaweed on the bottom. In mixed-species treatments (MST), however, the species were largely separated by habitat. While the distribution of I. emarginata was completely unaffected by the mere presence of interspecific competitors, habitat selection of I. baltica changed notably when I. emarginata was present. The habitat use patterns observed in MST conformed to those realized in geographical areas where the two species overlap in distribution: I. emarginata is dominant among decaying seaweed on the sea floor, and I. baltica is the dominant species among surface-floating seaweed. Our findings suggest that habitat segregation between the two species is essentially interactive, resulting from rapid decision-making of I. baltica with respect to habitat selection. The underlying mechanism is discussed. I. emarginata is highly superior to I. baltica in interference competition and rapidly eliminates the latter from one-habitat systems which do not allow I. baltica to escape from this interaction. In more natural, heterogeneous environments, however, I. baltica seems to be able to coexist with the superior competitor due to its broader habitat niche, flexibility in habitat selection, and a behavioural disposition to avoid normally preferred habitats when these are occupied by I. emarginata.  相似文献   

16.
Tetraclita japonica and T. formosana are common intertidal barnacles with similar morphology, which leads to uncertainty in their species status. In the present study, we try to elucidate the taxonomic status of the two taxa using morphology and mitochondrial control region and cytochrome c oxidase subunit I (COI) sequences of the barnacles in their distribution range. The two taxa were found to be morphologically similar; a diagnostic difference between them was only observed in the colour of the parietes and opercular plates. Little genetic differentiation was detected in the control region and COI (ΦCT < 0.025 for both markers) between two taxa, but differentiation was found between the southern (Taiwan and Hong Kong) and northern (Japan) populations of T. japonica/T. formosana, which might be the result of isolation by distance and upwelling in summer. Our data suggest that the two presently recognized species probably represent two colour morphotypes of the same species exhibiting different geographical distribution. T. japonica is abundant in Japan and southeast coast of China, whereas T. formosana is only abundant in Taiwan. The heterogeneous environment might exert a divergent selection pressure leading to asymmetric distribution of the two colour morphotypes. The different colours might be a result of either phenotypic plasticity adaptive to environmental variables or genetic hitchhiking of local adaptive genotypes. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Echinoderms are major predators of anemones in temperate ecosystems. The fate of two algae, zooxanthellae and zoochlorellae, after their host anemone (Anthopleura elegantissima Brandt) was consumed by the leather star Dermasterias imbricata Grube was determined in experiments conducted in July and August 2004. Productivity, photosynthetic pigments, and mitotic index (percent of cells dividing) were used as indicators of algal health; algae released after leather stars consumed their host were compared with algae freshly isolated from anemones. Two types of waste products contained algae: pellets resulting from extraoral digestion, and feces. Zooxanthellae and zoochlorellae isolated from these waste products were photosynthetic, although to different extents. For algae from feces and pellets, light-saturated photosynthetic rates (P max) were 85 and 13%, respectively, of P max of freshly isolated zooxanthellae; and were 20 and 46%, respectively, for zoochlorellae. The photosynthetic pigments and mitotic index (percent of dividing cells) were not altered by the feeding activities of the leather star. These results show that algae released by seastar predation on their hosts remain viable, and are hence available for establishing symbioses in A. elegantissima and other potential hosts.  相似文献   

18.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

19.
Embryos of the large infaunal clam Laternula elliptica and the scallop Adamussium colbecki, from Antarctica, were cultured over an 18-month period. Their development rates were extremely slow, taking 240 and 177 h, respectively, to reach the trochophore stage. This is ×4 to ×18 slower than related clams and scallops from temperate latitudes. The relationship between temperature and development rate for bivalve molluscs shows the expected slowing with reduced temperature (Q 10 in the range 2–4) for temperate and tropical species. However, the slowing at polar latitudes is much stronger than at warmer waters, and all of the limited data for Antarctic species are well above the Arrhenius plot for the overall bivalve data, and the Q 10 value for Antarctic to cool temperate species is 11.8, well outside the expected range for biological systems. Either the relationships describing the effects of temperature on the kinetics of biological systems do not apply to Antarctic bivalve molluscs, or some other factor that cannot be compensated for becomes important at low temperature. In the laboratory, L. elliptica embryos stayed viable in very sticky egg capsules for up to 18 months without hatching. However, even the disturbance of removing eggs using a pipette ruptured some egg capsules allowing embryo release. Gametogenesis in Antarctic marine invertebrates is almost universally slowed compared to temperate species, with nearly all cases documented requiring more than 1 year to complete oogenesis. The only exception so far appears to be A. colbecki, which has a 1-year gametogenic cycle. The data here indicate that it has been unable to adapt embryonic development in a similar way, and we are not aware of any exceptions to the markedly slowed development at low temperature rule.  相似文献   

20.
The zoanthid genus Isaurus (Anthozoa: Hexacorallia) is known from both the Indo-Pacific and Atlantic Oceans, but phylogenetic studies examining Isaurus using molecular markers have not yet been conducted. Here, two genes of markers [mitochondrial cytochrome oxidase subunit I (COI) and mitochondrial 16S ribosomal DNA (mt 16S rDNA)] from Isaurus specimens collected from southern Japan (n = 19) and western Australia (n = 3) were sequenced in order to investigate the molecular phylogenetic position of Isaurus within the order Zoantharia and the family Zoanthidae. Additionally, obtained sequences and morphological data (polyp size, mesentery numbers, mesogleal thickness) were utilized to examine Isaurus species diversity and morphological variation. By comparing our obtained sequences with the few previously acquired sequences of genera Isaurus as well as with Zoanthus, Acrozoanthus (both family Zoanthidae), and Palythoa spp. (family Spenophidae) sequences, the phylogenetic position of Isaurus as sister to Zoanthus within the Family Zoanthidae was suggested. Based on genetic data, Isaurus is most closely related to the genus Zoanthus. Despite considerable morphological variation (in particular, polyp length, mesentery numbers, external coloration) between collected Isaurus specimens, all specimens examined are apparently conspecific or very closely related based on molecular data and observed morphological variation within colonies. Additionally, obtained internal transcribed spacer of ribosomal DNA (ITS-rDNA) sequences from symbiotic zooxanthellae (Symbiodinium spp.) from all Isaurus specimens were shown to be subclade C1-related Symbiodinium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号