首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
污泥土地利用对土壤中重金属形态的影响   总被引:32,自引:2,他引:32  
马利民  陈玲  吕彦  赵建夫 《生态环境》2004,13(2):151-153
土地利用是资源化利用城市污水厂污泥的有效途径,随污泥中的营养成分一起进入土壤中的还有其中的重金属元素,它们有可能成为一种环境安全的隐患。本实验所用的土壤为污泥经过无害化及稳定化处理后,与上海潮滩沙土按不同比例(干污泥质量比)混配而成。种植前后分别对沙土、污泥及混配土的重金属含量及形态进行测试。选择几种花卉植物,如菊花(Calendula officinalis)等进行植物种植试验,一个生长季后对植物中的重金属含量及形态进行测试。应用Tessler连续提取法,对污泥中的重金属进入土壤后,土壤中重金属的含量、赋存状态等方面的规律进行研究,发现污泥的土地利用会明显增加土壤中的重金属含量,而且重金属的形态也有明显的变化,可交换态和碳酸盐结合态的重金属含量有明显的增加;如长期使用,则必须采取相应的措施,以消除有害的影响。  相似文献   

2.
化学方法降低城市污泥的重金属含量及其前景分析   总被引:5,自引:0,他引:5  
城市污泥含有丰富的氛、磷、河和有机质,农用前景广阔。但其中重金属含量常超标而受到限制。利用化学试剂如酸、有机物、表面活性剂等与污泥中的重金属发生作用,形成溶解性的金属离子或金属-试剂络合物,再通过淋滤.可以剔除污泥中大量的重金属,使其降低到符合农用标准。本文介绍了化学方法去除污泥事金属的原理和效果,分析了影响因素,包括重金属种类、污泥特性、操作方法、剔除时间等。并对该法的应用前景进行了讨论。  相似文献   

3.
• Adding kaolin/zeolite promotes the formation of stable heavy metals. • The potential ecological risk index of co-pyrolysis biochar is extremely low. • Increasing the pyrolysis temperature reduces the leaching toxicity of heavy metals. • The toxicity of biochar reduces with the increasing content of stable heavy metals. Pyrolysis is a promising technique used for treating of sewage sludge. However, the application of pyrolysis products is limited due to the presence of heavy metals. In this study, sewage sludge mixed with kaolin/zeolite was pyrolyzed in a rotary kiln, aiming to improve the immobilization of heavy metals in pyrolytic carbon. The total concentrations, speciation distributions, leaching toxicities, and potential ecological risk indices of heavy metals in pyrolysis biochar were explored to examine the effects of kaolin/zeolite and pyrolytic temperature on immobilizing heavy metals. Further, mineral composition and surface morphology of biochar were characterized by X-ray diffraction and scanning electron microscopy to reveal the potential mechanism of immobilizing heavy metals. Increasing pyrolysis temperature facilitated the stabilization of heavy metals in pyrolysis biochar. The proportions of stable heavy metals in biochar obtained at 650℃ were 54.50% (Cu), 29.73% (Zn), 79.29% (Cd), 68.17% (Pb) and 86.70% (Cr). Compared to sewage sludge, the potential contamination risk index of pyrolysis biochar obtained at 650℃ was reduced to 17.01, indicating a low ecological risk. The addition of 7% kaolin/zeolite further reduced the risk index of co-pyrolysis biochar prepared at 650℃ to 10.86/15.28. The characterization of biochar revealed that increase in the pyrolysis temperature and incorporation of additives are conducive to the formation of stable heavy metal-inorganics. This study demonstrates that the formation of stable mineral compounds containing heavy metals is the key to stabilizing heavy metals in pyrolysis biochar.  相似文献   

4.
We studied the mobility and transport of heavy metals such as Cu, Zn, As, Cd, Cr, Ni, and Pb, from soil and soil amended with sewage sludge to sorghum plants. The total and ethylenediaminetetraacetic acid (EDTA) extractable heavy metals in agricultural soil and untreated domestic sewage sludge (DWS) samples were determined. The correlation between the total and extractable metals in soil and sewage sludge was investigated. The total and extractable heavy metals in soil, sewage sludge and sorghum grain were analysed by flame and electro thermal atomic absorption spectrometer (FAAS/ETAAS), after digestion in microwave oven. Statistically good correlations were obtained between the total contents of all heavy metals and their respective extractable fractions in soil and domestic wastewater sludge. Transfer factors of all heavy metals from domestic sewage sludge to sorghum grains were determined.  相似文献   

5.
天津污灌区土壤重金属污染环境质量与环境效应   总被引:29,自引:2,他引:29  
王祖伟  张辉 《生态环境》2005,14(2):211-213
污水作为天津解决农业用水不足的手段已经有几十年的历史。文章分析了污灌区土壤一作物系统中Cd、Hg、As、Cu、Pb、Zn和Cr等有毒重金属的质量分数,利用单因子污染指数法和加权综合污染指数法进行污染评价。评价结果表明污灌区土壤受到了严重污染,主要重金属污染元素为Cd、Hg;农作物中的主要超标元素为Cd、As。因此,污灌区重金属污染土壤的修复工作迫在眉睫。  相似文献   

6.

The huge amounts of sewage sludge produced by municipal wastewater treatment plants induce major environmental and economical issues, calling for advanced disposal methods. Traditional methods for sewage sludge disposal increase greenhouse gas emissions and pollution. Moreover, biochar created from sewage sludge often cannot be used directly in soil applications due to elevated levels of heavy metals and other toxic compounds, which alter soil biota and earthworms. This has limited the application of sewage sludge-derived biochar as a fertilizer. Here, we review biomass and sewage sludge co-pyrolysis with a focus on the stabilization of heavy metals and toxicity reduction of the sludge-derived biochar. We observed that co-pyrolyzing sewage sludge with biomass materials reduced heavy metal concentrations and decreased the environmental risk of sludge-derived biochar by up to 93%. Biochar produced from sewage sludge and biomass co-pyrolysis could enhance the reproduction stimulation of soil biota by 20‒98%. Heavy metals immobilization and transformation are controlled by the co-feed material mixing ratio, pyrolysis temperature, and pyrolysis atmosphere.

  相似文献   

7.
镍钴采选废石和尾矿中重金属的溶出释放规律对矿区的重金属污染防治具有重要意义。但目前,国内还没有对镍钴行业采选产生的尾矿和废石中重金属的溶出规律开展研究。本文以镍钴采选企业的尾矿和废石作为样本,开展了毒性浸出实验。研究了不同pH值、离子强度、温度等实验条件对重金属溶出的影响,探讨了镍钴采选过程中所产生的尾矿和废石中重金属的溶出特性和释放规律。实验结果表明,尾矿样品中Ni的浸出浓度为42.28 mg·L^-1,是最大允许排放浓度的8.86倍,为具有浸出毒性特征的危险废物;废石样品中重金属Ni和Cu的溶出浓度分别为4.72 mg·L^-1和26.2 mg·L^-1,超过最大允许排放浓度,属于第Ⅱ类一般工业固体废物。pH对样品中Ni、Cr、Pb、Co和As的溶出量影响较大,其中尾矿中Ni和Cu在pH较低的条件下,可达到44.28 mg·L^-1和53 mg·L^-1,远高于最大允许排放浓度,而Hg、Cd和Cu的溶出量随pH值的变化不大。除As以外,样品中大多数重金属的溶出质量浓度在酸性条件下比在中性条件下高,这表明在酸性环境条件下,这些重金属对周围生态环境的潜在风险更大。离子强度的变化对Cd和Co的溶出量的变化并不明显,而当离子强度变化时,Ni、Cr、Pb、Hg、Cu和As的溶出量可能达到最大,使周围环境的潜在生态风险增大。当温度达到35~40℃时,部分重金属如Co、Pb、Cd 等,溶出量将达到最大;当温度低于25℃时,除 Ni 以外,大部分重金属溶出量很低。而温度变化对重金属Cu、As、Cr和Hg的溶出量的影响不明显,波动范围较小,对周围生态环境产生的潜在生态风险较小。  相似文献   

8.
Effect of cropping systems on the mobility and uptake of Cd and Zn   总被引:3,自引:0,他引:3  
A field experiment was carried out to determine the effect of different land use systems such as continuous grass and agricultural crops rotation on the bioavailability of heavy metals in soils contaminated by former excessive sewage sludge application. The results show that Cd and Zn concentrations increased to 2 and 3.5 folds within 3 cuts of grass, respectively. Even 10 years after the end of excessive sewage sludge application the concentration of Cd in winter and summer wheat is 3.4 and 2.5 folds higher than the control, respectively. Zn concentration increased by two folds for both crops. In conclusion, the uptake depends on plant species and the degree of soil contamination. The availability of heavy metals was not changed with time.  相似文献   

9.
Heavy metals, lead (Pb) and mercury (Hg) are non-essential elements. Plants absorb these metals from soil, water and air through their roots and leaves. Heavy metals are the major environmental pollutants, which spread to soil through the use of pesticides, herbicides and micronutrient fertilizers, industrial effluents, decay of junk materials and sewage sludge, vehicular emissions, re-suspended road dust, diesel generator sets and coal-based thermal power plants. Sewage and sludge have contributed to heavy metal contamination of peri-urban lands and vegetable crops. The present review focuses on the effects of various concentrations of Hg on growth of young and mature seedlings as well as on nitrate reductase activity and nitrate assimilation in intact and excised seedling, especially the mechanism underlying nitrate reductase regulation by this heavy metal. Evidence indicates that mercury exerts significant adverse effects on the physiological activity of plants.  相似文献   

10.
The heavy metal content in sewage sludges from a big Chinese city was investigated. Concentrations of zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), cadmium (Cd) and mercury (Hg) in the sludges were 258–4050 mg kg‐1, bd: 994 mgkg‐1, 8.3–566 mg kg‐1, 26.3–370mgkg‐1 4.2–113 mg kg‐1 0.9–6.4 mg kg‐1 and 1.8–12.4 mg kg‐1 respectively. The concentrations of Zn and Pb in the sewage sludges from the residential areas were higher than those in the mixed ones (from both residential and industrial areas). The concentrations of heavy metals in the flocculently dewatered sewage sludges were higher than those in the sediment of the centrifuged undewatered sewage sludges. After centrifuging, more than 60% of heavy metals remained in the sludge sediment with an exception of Cd. The content of organic matter, total phosphorus (T‐P) and total potassium (T‐K) in these sewage sludges was also measured.  相似文献   

11.
A novel method was applied to co-recover proteins and humic acid from the dewatered sewage sludge for liquid fertilizer and animal feed. The proteins in sewage sludge were first extracted using the processes of ultra-sonication and acid precipitation, and then the humic acid was recovered via membrane filtration. The extraction efficiency was 125.9 mg humic acid?g−1VSS volatile suspended solids (VSS) and 123.9 mg proteins?g−1 VSS at the optimal ultrasonic density of 1.5 W?mL−1. FT-IR spectrum results indicated that the recovered proteins and humic acid showed similar chemical characteristic to the natural proteins and humic acid. The acidic solution (pH 2) could be recycled and used more than 10 times during the co-recovery processes. In addition, the dewatered sludge could be easily biodegraded when the humic acid and proteins are extracted, which was essential for further utilization. These findings are of great significance for recovering valuable nutrient from sewage sludge.  相似文献   

12.
为揭示苏云金杆菌(Bacillus thuringiensis,简称Bt)富集重金属的可行性,考察重金属对Bt发酵的影响,以生物毒性较大的重金属镉(Cd)为研究对象,以城市污泥为培养基,研究了添加Cd(II)对Bt生长和晶体蛋白合成的影响,分析了Bt发酵过程中Cd有效态质量浓度的变化,利用傅立叶红外光谱(FTIR)和X线光电子能谱(XPS)初步探讨了Cd(II)在Bt表面吸附的作用机制。结果表明:培养基中外加Cd(II)对Bt生长的影响主要取决于Cd有效态质量浓度,污泥培养基在支持Bt生长和降低重金属有效态质量浓度上均明显优于常规培养基;Bt对Cd(II)有较好的耐受性,当Cd有效态质量浓度在20 mg.L-1以下时,Bt能较好地完成生长代谢过程;光谱学分析表明Bt对Cd(II)有少量吸附,吸附位点主要为羟基,少量C=O基团也可与吸附反应,可有效降低重金属的生物有效性。  相似文献   

13.
The heavy metals in non-burnt bricks made from municipal solid waste (MSW) gasification slags with a modified European Bureau Community of Reference procedure were studied. Heavy metals were present in the form of oxidizable and residual fractions, which were stable and not easy to dissolve. The preparation process of non-burnt bricks displayed prominent solidification effect for some heavy metals in the gasification slag. The solidified rate for metals, such as As, Cd, Cr, Ni, and Zn reached 89.82%, 79.57%, 73.64%, 66.73%, and 88.05%, respectively. Moreover, the leaching concentrations of eight heavy metals were all below 8 mg/kg. On the basis of these observations, the risk of exposure to heavy metals in non-burnt bricks was evaluated using the solidification formula and the leaching concentration of heavy metals combined with the assessments of the Hakanson potential ecological risk and pollution ratio of secondary phase and primary phase. Results showed that the preparation of MSW gasification slag non-burnt bricks was not harmful to the environment, but attention is warranted for possible migration of heavy metal cadmium (Cd) in the long term, which may result in an impact on the ecological environment.  相似文献   

14.
以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。  相似文献   

15.
蚯蚓堆肥相关研究多集中在生活污泥方面,对工业污泥的探索较少。该研究以马鞍山某钢铁污水处理站污泥为例,添加不同比例稻壳炭(2%、4%、8%),设置污泥单独堆肥、稻壳炭与污泥堆肥以及蚯蚓-稻壳炭联合污泥堆肥试验,探索蚯蚓与稻壳炭联合堆肥对工业污泥中重金属形态和生物有效性的影响。研究表明,(1)相比污泥单独堆肥,稻壳炭联合污泥堆肥能增加污泥pH、EC、TP和降低TOC、TN,而蚯蚓联合稻壳炭堆肥污泥可增加TN,并进一步增加污泥EC、TP,显著降低污泥的pH、TOC。(2)稻壳炭堆肥中重金属Zn、Cu、Pb、Cd含量因浓缩效应而上升;而蚯蚓联合稻壳炭堆肥,重金属含量显著下降,添加4%稻壳炭时,重金属Zn、Cu、Pb、Cd质量分数达到最小值,分别为856.64、137.10、158.92、15.48mg·kg-1。(3)重金属形态分析表明,随着稻壳炭比例增加,稻壳炭堆肥中重金属Zn、Cu、Pb、Cd的交换态和碳酸盐结合态转化为残渣态及铁锰氧化态的比例增大,添加8%稻壳炭时DTPA提取的有效态重金属质量分数最低,分别为705.72、47.95、50.43、4.47 mg·kg-1;蚯蚓-稻壳炭联合堆肥会使得污泥中重金属交换态、碳酸盐结合态、铁锰结合态和有机结合态均向残渣态转化,添加4%稻壳炭与蚯蚓的协同转化能力最大,Zn、Cu、Pb、Cd有效态重金属质量分数分别为629.84、38.63、36.76、1.63mg·kg-1,说明稻壳炭添加入蚯蚓堆肥可进一步降低工业污泥中重金属有效性,使重金属钝化。本研究可为稻壳炭联合蚯蚓堆肥处理工业污泥提供参考和科学依据。  相似文献   

16.
Repeated applications of metal-contaminated sewage sludge can have a drastic effect on soil levels of trace elements and lead to serious toxicity effects in plants. In some cases, land can be rendered sterile.It has been demonstrated that contamination of soils with respect to cadmium, copper, lead, mercury, nickel and zinc is largely irreversible, although there does appear to be a long-term tendency for these metals to become progressively less available to plants over a long period of time. Most national guidelines designed to regulate the disposal of sewage sludge on agricultural land are based on the assumption that relatively rapid fixation of contaminant metals does take place in the soil after sludge application. There is a dearth of information relating to the rates at which potentially toxic-elements commonly present in sewage sludge become immobilised in soils, although it is clear that contaminant boron can be leached down the profile in the short term.Evidence is presented that contamination of top soil can persist for a period of six years after a single application of sludge (150 tonnes dry matter/ha). Over this period, there was little change in available levels of boron, cadmium, copper, lead and zinc in the top soil and the degree of enhancement of these elements in perennial ryegrass grown in the sludge-treated area remained more or less unchanged.  相似文献   

17.
孙敏  唐莹  郝亚婷  季宏兵 《环境化学》2021,40(3):678-686
酸雨对露天粉煤灰堆积场的淋滤作用导致周围环境产生重金属污染是一种广泛现象.为研究酸雨对贵阳市水源地红枫湖周边一大型粉煤灰堆积场的重金属迁移影响,本文以这一粉煤灰堆积场为研究对象,通过静态淋溶实验探讨了粉煤灰中Cr、Ni、CU、Zn、AS、Cd、Pb等7种重金属元素的含量、存在形态、淋溶时间、堆积时间、粒度对重金属溶出规律的影响.结果表明,粉煤灰中Ni、Cu、Zn、Pb、As和Cd等6种重金属的含量随堆积时间增加而增大,Cr含量变化与上述反之;在淋溶实验中,堆积时间的增加使Cr、Ni、Cu和Zn重金属元素的可溶态减小;在淋溶第28—48天期间,Cr、Ni和Cu元素溶出浓度降低的粒度顺序为细粒度>中粒度和粗粒度、Cd元素溶出浓度降低的粒度顺序为中粒度>粗粒度>细粒度.本研究对红枫湖水源地和周边地下水的重金属防控提供一定的参考依据.  相似文献   

18.
碱性条件下胡敏酸吸附镉的特征研究   总被引:1,自引:0,他引:1  
为了探讨胡敏酸在碱性条件下的吸附镉机理,了解碱性盐化土壤中镉污染机理和生态环境之间的关系,实验研究了胡敏酸在碱性条件吸附镉的特征。采用批吸附试验方法,研究不同Cd初始浓度、反应时间、不同pH和离子强度对胡敏酸吸附镉的影响,结果表明:胡敏酸具有较强吸附镉的能力,可以用Langmuir吸附模型和Temkin吸附模型很好地拟合其等温吸附过程(r分别为0.9809和0.9816);在60 min内的快速反应阶段和60 min至6 h间的慢速反应阶段,胡敏酸对镉的吸附量分别为2.895 mg·g-1和3.342 mg·g-1,吸附反应平衡前6 h的动力学过程可以用Elovich方程进行很好的拟合(r为0.9285);随着pH增加,吸附率表现出逐步增加趋势,并以pH为4.5和8.5为界,呈现两端增加速度快,中间增加慢的规律性;在较低浓度离子强度下,离子强度的增加促进胡敏酸吸附镉;而在高离子强度下,表现出相反的规律性;在相同的条件下,不同离子强度对胡敏酸吸附镉的影响大小为:氯化钙〉氯化镁〉氯化钾〉氯化钠。土壤在盐化的过程中,由于无机盐浓度的增加,增加了重金属离子的生物可利用性,加大了重金属离子的生态风险。  相似文献   

19.
采用人工污染土壤、尾矿砂、污泥等不同载体的污染源来模拟土壤污染 ,研究其对水稻生长、吸收养分和吸收重金属的影响。结果表明 ,不同污染载体对水稻生长的影响不同 ,其影响的大小顺序为人工污染土壤 >尾矿砂 >污泥 >尾矿砂 +污泥。不同污染载体对水稻吸收重金属的影响亦不同 ,以纯化学试剂的形式添加到土壤中的重金属最易被提取出来 ,植物从中吸收的Cu、Zn、Pb、Cd最多 ,而从以污泥为污染载体的土壤中吸收的Zn、Pb、Cd最少。研究表明 ,用添加纯化学试剂的方法来模拟污染土壤对生态与环境的影响是可行的 ,确定土壤负载容量是安全的 ,因为在实验条件下它对供试植物的影响最明显  相似文献   

20.
A study to understand the mobility and transport of heavy metals (HMs) from soil and soil amended with sewage sludge to maize plants was carried out. The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and untreated domestic sewage sludge samples, and the correlation between the total and extractable metals in soil and sewage sludge were carried out. Pot experiments were performed to study the transfer of HMs to maize grains, grown in soil (control) and in soil amended with sewage sludge (test samples). The total and extractable HMs in soil, sewage sludge, and maize grains were analysed by FAAS/ETAAS (flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer) after digestion in microwave oven. Statistically significant correlations were obtained between the total contents of Cu, Cd, As and their respective extractable fractions in soil, while in domestic wastewater sludge (DWS) the better correlation was observed only for Ni and Cd. The edible part of maize plants (grains) from test samples presented high concentration of Zn, Pb, Ni, Cd, Cu, As, and Cr concentrations (80.7–85.6, 3.8–3.95, 2.35–2.5, 0.75–0.82, 3.21–3.29, 0.23–0.27, and 0.22–0.29?mg?kg?1, respectively). Good correlations were found between metals in exchangeable fractions of both soil and DWS and total metals in control and test samples of maize grains. The transfer factor of all HMs from DWS to maize grains was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号