首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
基于长江中下游地区1961~2100年区域气候模式COSMO-CLM(CCLM)模拟与1961~2005年气象站观测的逐日降水数据,通过统计计算年降水量、强降水量、暴雨日数和极端降水贡献率4个极端降水指数,研究全球升温1.5℃与2.0℃情景下,长江中下游地区极端降水的时空变化特征。结果表明:(1)全球升温1.5℃情景下,年降水量相对于1986~2005年减少5%,强降水量、暴雨日数和极端降水贡献率分别增加7%、33%和4%;概率密度曲线表明,年降水量均值下降,强降水量、暴雨日数和极端降水贡献率均值上升,极端降水方差增大;年降水量、强降水量和暴雨日数在空间上表现为南部增加北部减少,极端降水贡献率则相反。(2)全球升温2.0℃情景下,年降水量下降3%,强降水量、暴雨日数和极端降水贡献率分别上升15%、46%和15%;年降水量均值稍有减少且方差稍有上升,强降水量、暴雨日数和极端降水贡献率均值和方差明显增加;年降水量减少区域位于长江主干以北,强降水量、暴雨日数和极端降水贡献率表现为绝大部分地区增加的空间变化特征。(3)全球升温由1.5℃至2.0℃时,年降水量、强降水量、暴雨日数和极端降水贡献率分别增加3%、7%、10%和11%;随升温幅度的增加极端降水均值和方差上升;极端降水呈增加态势的范围扩大。因此,努力将升温控制在1.5℃对降低极端降水的影响具有重要意义。  相似文献   

2.
利用淮河流域4省170个气象站点1961~2005年的降水观测数据,采用Kriging法对淮河流域各季及年降水量进行了插值,得到了1 km×1 km降水栅格序列。在此基础上,对淮河流域降水的时空格局及其变化特征进行了分析。结果表明:淮河流域降水量的空间分布基本呈南高北低、山区多于平原、近海多于内陆的格局。近45 a来淮河流域降水量的年际波动较为强烈,而变化趋势不显著。流域内汛期和年降水量的年代际变化则具有明显的阶段性,主要表现在20世纪90年代前基本为下降趋势,2000年后明显上升。当前,淮河流域正处于降水的高气候变率时期。45 a来,降水的空间格局发生了一定的变化,表现在淮河中上游和干流沿岸地区的降水量升高,而流域东北部的降水则呈下降趋势  相似文献   

3.
使用长江流域142个站1960~2009年逐日降水量资料,通过定义度量极端降水过程时空聚集程度的参数--极端降水过程事件聚集度和聚集期,并采用主成分分析、Morlet小波分析方法,研究了长江流域极端降水过程事件的年内分布特征。结果表明:长江流域上游极端降水过程事件主要聚集在7月上旬,出现相对比较集中,且聚集度和聚集期年际变化小;中下游则主要聚集在5月中旬至6月下旬,出现比较分散,聚集度和聚集期年际变化相对较大。极端降水过程事件聚集度和聚集期的主要空间异常模态分别表现为东南与西北反向和南北反向的变化特征;其区域平均序列分别呈上升和下降趋势,并分别在13 a和10 a尺度上周期震荡明显,表明长江流域极端降水过程事件的发生有趋于集中和提早趋势  相似文献   

4.
极端降水对于三峡水利工程的调度蓄水和防洪调控具有重要的作用,在气候变化背景下三峡库区极端降水的变化特征值得研究。基于三峡库区1961~2020年33个气象台站的降水观测资料,分析了该地区小时、日和连续降水量极端降水的时空变化特征。结果表明,三峡库区小时降水量、日降水量和连续降水量极大值的空间分布均呈东南部大、西南部和东北部小的特征,但历年最大值的变化趋势空间分布存在差异。三峡库区小时、日和连续降水量极端事件的阈值均呈“东大西小”的分布特征,其中湖北鹤峰的日降水量和连续降水量极端事件阈值均为各站点中最大。在气候增暖背景下,三峡库区日降水量极端事件在夏季尤其是6~7月发生频次增多,连续降水量极端事件更集中发生在夏季,小时和日降水量极端事件年频次自2001年以后呈增加趋势,这可能会加重三峡库区的暴雨洪涝灾害风险。  相似文献   

5.
鲁中地区极端降水变化特征   总被引:1,自引:0,他引:1  
基于鲁中地区8个气象站1980—2014年逐日降水数据,统计极端降水阈值,并利用线性倾向率、Morlet小波分析和经验正交分解(EOF)等方法分析极端降水的时空变化规律。结果表明:鲁中地区日极端降水阈值为33.2—40.4mm,东北部平原最低,山区最高,日最大降水量由中部地区向南北两侧递增;鲁中地区极端降水日数随时间呈非显著性增加趋势,2002年为突变发生年份,有2年的主要变化周期,主要空间变化规律一致,但在第二特征向量上呈现山区和平原变化的不一致性;年极端降水强度随时间呈增加趋势,1992年为突变年份,年极端降水日数占年降水总日数的5%,贡献了32%的年降雨量;鲁中地区极端降水最早出现在4月,最晚平原地区出现在10月,山区出现在11月,最多出现在7—8月,月际变化的地域差异不大。  相似文献   

6.
河南省汛期极端降水事件分析   总被引:8,自引:2,他引:6  
利用河南1961~2006年50个气象站台站汛期(6~8月份)逐日降水量资料,定义95%降水分位数为极端降水事件的阈值,建立不同站近46年汛期极端降水事件发生频次的时间序列。在此基础上采用趋势分析、最大熵谱分析等统计技术方法,对河南降水事件发生频次的空间分布及年际变化特点进行了分析。结果表明:空间变化上总体具有北多南少的特点,而且汛期降水量的比重与极端降水事件发生频次的高低存在着很好的一致性;空间分布上主要有全省一致型、西北 东南型、南阳盆地型和中部分布型等4种类型,其中全省一致分布型为最主要的空间模态;年际变化趋势各地有所不同,豫西、豫南区为减少趋势,而豫中、豫北、豫东和豫西南区表现为增加趋势,而且在振荡形态上各有同异,以2~8年和10年左右的年代际变化最为普遍。  相似文献   

7.
利用河南1961~2006年50个气象站台站汛期(6~8月份)逐日降水量资料,定义95%降水分位数为极端降水事件的阈值,建立不同站近46年汛期极端降水事件发生频次的时间序列。在此基础上采用趋势分析、最大熵谱分析等统计技术方法,对河南降水事件发生频次的空间分布及年际变化特点进行了分析。结果表明:空间变化上总体具有北多南少的特点,而且汛期降水量的比重与极端降水事件发生频次的高低存在着很好的一致性;空间分布上主要有全省一致型、西北 东南型、南阳盆地型和中部分布型等4种类型,其中全省一致分布型为最主要的空间模态;年际变化趋势各地有所不同,豫西、豫南区为减少趋势,而豫中、豫北、豫东和豫西南区表现为增加趋势,而且在振荡形态上各有同异,以2~8年和10年左右的年代际变化最为普遍。  相似文献   

8.
降水量时间序列变化的小波特征   总被引:37,自引:3,他引:34  
利用小波变换对降水量时间序列的多时间尺度变化及突变特征进行了探讨。小波变换不仅能将降水量时间序列的频率特征在时间域上展现出来,清晰地给出各种时间尺度的强弱和分布情况以及早涝变化趋势和突变点,而且还能分析出其主要周期。以新安江流域黄山地区主汛期(5—7月)和年降水量为例,计算表明,其年际及年代际时间尺度在时域中分布不均匀,具有明显的局部化特征;同时分析出主汛期降水具有8年、19年左右的周期,年降水存在6年、19年左右的周期;研究还表明,主汛期降水与年降水的时间尺度变化比较接近。  相似文献   

9.
利用极端降水量集中度和集中期讨论三峡库区汛期极端降水量的非均匀性分布特征。结果表明: 三峡库区极端降水量空间分布表现为西南部和东北部地区相对较少,中部、东南部相对较多。库区汛期极端降水集中度和集中期的空间差异不大,集中程度总体较差,东北部和西部地区极端降水相对集中,中部相对分散。库区极端降水主要集中在6月底和7月上中旬,东北部和西部偏西地区集中期相对较晚,中部地区集中期相对较早。库区汛期极端降水量的分配状况与同期极端降水量存在较好的关系,即极端降水量越少,则极端降水量越集中、集中期越早;反之极端降水量越多,则极端降水量越分散、集中期越晚,尤其是在库区东北部地区最为显著。三峡库区蓄水后极端降水集中程度在空间上一致性较好,表现为蓄水后更为分散;极端降水量和集中期则在空间上差异显著,大致表现为蓄水后东北部极端降水增加并延迟;西南部极端降水减少并提前  相似文献   

10.
基于大渡河流域1961~2010年逐日降水数据资料,运用Mann-Kendall非参数检验、Morlet小波分析法,分析了近50a来大渡河流域极端降水事件的时空变化特征。结果表明,大渡河流域的极端降水指数均呈现出相对稳定的波动增加;多年平均值均呈现出由西北向东南方向逐渐增多的分布特征,变化趋势的空间分布存在着区域差异:除强降水日数外,其他极端降水指数均呈现下游增加,上游减小的变化趋势,大渡河流域极端降水与年降水量变化趋势密切相关。大渡河流域各指数突变特征不一致,1d、5d最大降水量突变年集中在1974~1976年前后;强降水日数、极端降水量及极端强降水日数发生突变的年份分别为1984年、1979年及1977年,且突变后呈现明显的增大趋势。大渡河流域极端降水指数周期特征较复杂,但普遍存在5~10a的年际振荡周期和20~25a的年代际振荡周期,且25a是最强的主周期。  相似文献   

11.
夏季南亚高压对我国长江中下游旱涝分布有重要影响,为深入认识长江中下游夏季降水年代际演变规律和机理,提高其短期气候预测水平,利用1960~2015年NCEP/NCAR再分析资料和地面气象站降水资料,分析夏季南亚高压年代际变化及其对长江中下游降水的影响。结果表明:夏季南亚高压强度、面积、南界、东伸脊点、西伸脊点和脊线均存在显著的年代际变化,长江中下游夏季降水也有明显年代际转折,南亚高压脊线与长江中下游夏季降水相关最好,呈显著负相关。夏季南亚高压脊线年代际偏南期,南亚高压偏大偏强,长江中下游高层气流强,且形成发散;副高增强西伸,印度有稳定低压存在,长江中下游处于副高西北侧和西风槽前,盛行西南风,与北方来的偏西气流汇合;低层风场有明显切变和辐合,从孟湾、南海输送来的水汽在长江中下游辐合上升,导致降水偏多。1990s初至2000s初,夏季南亚高压年代际减弱西撤,副高减弱东撤,但由于两个高压减弱程度较小,长江中下游夏季降水仍偏多。  相似文献   

12.
基于长江中下游流域6省17县市467家农户在2005~2010年期间关于农村环境对比变化的调查数据,构建了现代化进程中农村环境质量变化及影响因素的差分方程模型,并对近5年长江流域农村环境变化现状及其影响因素进行深入分析。结果表明,(1)我国长江中下游流域的农村环境质量下降变化出现了明显加快总趋势。其中长江中游流域地区农村环境质量下降变化明显比长江下游流域地区下降的变化幅度大,但长江中下游地区农业生产环境有显著好转。(2)长江中游和下游流域农村环境质量变化影响因素既有同质性也有差异性。其中同质性表现都对自然资源过度开发和人们环保意识弱。差异性体现长江中游地区影响环境变化的主要因素是城市化和农业现代化进程加快造成环境质量快速下降,而长江下游农村地区主要是人口压力大,工业化程度和城乡一体化程度高,农村地区面对生活排放和工业排放的叠加影响,从而造成环境质量的下降。研究结论对实现我国工业化、城市化和农业现代化同步发展的“十二·五”规划目标具有实际意义  相似文献   

13.
制度创新:依托武汉建设长江中游城市群   总被引:2,自引:2,他引:0  
经过上千年的发育和发展,我国长江中游流域已形成了规模庞大的、以武汉为中心、经济联系紧密的城市群落的雏形。通过对长江中游城市群内部的分析以及与珠江三角洲、长江三角洲等发达区域的比较,阐明了其经济发展相对滞后 和城市群内部各城市间发展水平参差不齐的深层次制度性障碍,提供了诸如转变政府职能,建立跨行政地界的区域协调机构,城市土地制度改革和促进区域内小城镇发展等一系列以区域整体协调和持续发展为目标的制度创新的基本思路。在此基础上,提出了圈层梯度推进、建设以武汉为中心的长江中游城市群的发展战略。为实现我国东部地区产业向西部转移,推进西部大开发提供了重要的战略支点,从而促进全国经济全面持续快速发展。  相似文献   

14.
基于长江流域1963~2016年131个气象站点逐日降水资料,计算了年降水、强降水(极端降水和暴雨)的集中度(PCD)、集中期(PCP),并结合M-K非参数性趋势检验分析以及相关分析等方法对长江流域降水非均匀性分布特征及其趋势进行了分析,目的在于揭示不同类型降水量在流域内非均匀性分布的特征,加强对强降水在时空分布上的理解。结果表明:流域多年平均年内日降水量集中度(PCDDP)、集中期(PCPDP)均由下游向上游递增,PCDDP变化趋势不显著而PCPDP变化趋势在空间上差异明显,在流域中下游呈增长趋势、上游呈减小趋势;年降水量与PCDDP呈显著正相关的地区主要分布在四川盆地;流域年极端降水量PCDEP、PCPEP的多年平均分布及变化趋势与PCDDP、PCPDP相似。流域多年平均暴雨量(日降水≥50 mm)从下游向上游递减,在四川盆地较四周高,暴雨在流域东部呈增长趋势,在四川盆地呈减小趋势;年暴雨量集中度(PCDRP)、集中期(PCPRP)从流域东南向西北递减,在湖北、贵州以及四川东部PCDRP呈增加趋势,在流域东南部呈减小趋势;PCPRP在江浙、安徽、湖南及贵州地区呈不明显的增加趋势,在四川、云南等地呈减少趋势。  相似文献   

15.
近50 a长江流域暴雨日数时空变化分析   总被引:1,自引:0,他引:1  
利用1961~2010年长江流域逐日降水资料和DEM数据,结合Mann-Kendall趋势法、变差系数法以及GIS空间分析等方法,分析了近50 a长江流域年均暴雨日数时空变化特征。结果表明:长江流域年均暴雨日数基本呈自东向西递减的规律,且随着海拔升高,年均暴雨日数逐渐减少,两者呈显著负相关关系;长江流域上游高原气候影响区年均暴雨日数小于1 d;而中上游中亚热带湿润气候影响区大于2 d;随着纬度的增加,暴雨开始时间推迟,结束时间提前,持续时间减少;年暴雨日数的变差系数与年均暴雨日数满足幂指数关系,相关系数达0.97,为显著相关。表现为年均暴雨日数大(小)的地方,变差系数小(大);除长江中下游中部和四川盆地及其周边地区年暴雨日数为减少趋势外,其它地方均表现为不同程度的增加趋势。鄱阳湖水系、四川(雅安市、峨眉山市、万源市)、湖南(安化县、南岳区)、湖北(洪湖市、英山县)年暴雨日数多且变差系数小,洪水、泥石流等灾害压力巨大;为有关部门了解长江流域洪水等灾害的发生机制、提高灾害预测预报能力、制定防灾减灾政策等提供科学依据。  相似文献   

16.
淠河流域降水时空变率大,深入分析不同强度等级降水的特征和变化,对于全面揭示研究区气候变化、合理有效利用水资源、防治洪旱灾害具有十分重要的意义。基于淠河流域12个气象站1958~2012年逐日降水资料,分析年、季不同级别降水量(频次)的变化特点,以及主汛期(5~9月)连续3d最大降水量的概率分布。结果表明,淠河流域小雨量(频次)四季分布比较均匀,级别越高,降水频次越少,分布越集中,夏季暴雨多发。淠河流域年总降水量增加趋势不显著,总降水频次则显著减少。夏季各级别降水量(频次)均呈增加趋势,其中暴雨增加最显著,冬季总降水频次无明显趋势变化,小雨、中雨量增加显著,春、秋季总降水频次和小雨频次的减少趋势极其显著。淠河流域暴雨量、暴雨频次均在1968年发生增多突变,小雨频次在1975年有极显著减少突变,年总降水量有增多突变,总降水频次则有减少突变。自20世纪70年代后期以来,研究区主汛期连续3d极端强降水出现概率加大,不同重现期极值增大,洪涝灾害风险加剧。  相似文献   

17.
利用1963~2015年长江流域115个气象站点逐日降水数据,分析了不同极端降水指标的空间变化特点和时间变化趋势。结果表明,近53 a来,长江流域多年平均年极端降水量与年降水量从下游到上游逐渐递减,两者变化趋势大致呈现“增-减-增”的空间分布格局。年极端降水量对年降水量贡献(PEP)存在明显的空间分布差异,但贡献比例在流域内普遍呈现增加的趋势。持续1 d的极端降水事件的降水量分布及其变化趋势与年极端降水量的分布特征类似,其对年极端降水量的贡献比例高达65%以上,说明长江流域极端降水以持续1 d的极端降水事件为主。持续2 d及以上的极端降水事件主要集在中皖苏赣局部地区和四川中部地区,但其降水量对年极端降水量的贡献比例较小。从上游到下游,年最大日降水量(MDP)逐渐增大。其中,上游源头地区的沱沱河、曲麻莱和玉树3个站点MDP主要集中在0~25 mm之间,其他站点均以25~50 mm量级为主;长江流域中部地区的MDP大部分以50~100 mm的量级为主,处于100~150 mm之间的次之;长江流域东部地区主要以100~150 mm量级的MDP为主。 关键词: 极端降水;降水贡献;不同历时;长江流域  相似文献   

18.
环洱海地区气候变化特征研究   总被引:3,自引:0,他引:3  
环洱海地区是云南省具有高原湖泊生态脆弱区、民族文化多元融合区和乡村经济发展活跃区等多重叠合特征的典型区域,是全球气候变化影响的敏感区和脆弱区。以环洱海地区1951~2014年6个基本站点的逐年平均气温、极端最高气温、极端最低气温、降水量、最大日降水量和日降水量≥0.1 mm日数资料为基础。采用线性倾向估计、Mann-Kendall趋势检验、Morlet小波分析和R/S分析等方法,研究了环洱海地区气候变化规律。结果发现:自1951年以来,环洱海地区年均气温和极端最低气温呈现出升高的趋势,而极端最高气温则呈现降低的趋势,变化速率分别为0.07℃/10 a、0.03℃/10 a和–0.14℃/10 a,对于年降水量、最大日降水量和降水日数而言,三者均为减少趋势,速率分别为–12.85 mm/10 a、–1.09mm/10 a和–1.73 d/10 a;环洱海地区年均气温、极端最高和极端最低气温均没有发生突变,年降水量和降水日数在2010年发生了一次减少突变,而最大日降水量则没有检测到突变的年份;环洱海地区年平均气温和年降水量在长时间尺度上的周期性变化最为显著,分别存在30 a和33 a左右的周期变化,并贯穿整个研究时段,而短时间尺度上的周期变化局域性特征突出;从未来演变趋势来看,年平均气温和极端最低气温将维持升温趋势,而极端最高气温则将持续降低趋势,年降水量继续减少的趋势未来将会逆转,但最大日降水量和降水日数两者将持续减少的概率更大。  相似文献   

19.
近50年长江流域降水日数的演变趋势   总被引:2,自引:0,他引:2  
通过分析不同强度降水量(大于75百分位和大于95百分位降水,下同)对应降水日数,研究了长江流域1951~2000年逐年和年代际降水日数变化趋势。大于75百分位的降水日数在上游以及中游的北岸增加趋势最显著,四川盆地是唯一显示减少趋势的地区。同样,大于95百分位的降水日数在中游和下游也表现出十分明显的增加趋势,呈现减少趋势的仍然是四川盆地,并略向其北方延伸。详细分析每10年的平均降水日数的距平发现,大于75百分位降水日数最大的正距平集中在中游的1980s、1990s和下游的1980s。最大的负距平也是在中游地区,发生在1950~1979年。因此,中游的降水日数增加的幅度最大。对于大于95百分位降水日数,长江流域中游和下游的变化趋势也是一致的,在1960s 和1970s的负距平后,都出现较大的正距平。上游降水日数的年际变化要小于中下游。比较不同百分位降水日数的变化趋势,可将长江流域1950~2000年降水日数的变化趋势分为3种类型:(1)在大于75百分位降水日数增加的同时,大于95百分位降水日数却有所减少;(2)大于75和大于95百分位降水日数同时呈减少的趋势;(3)大于75和大于95百分位降水日数同时呈增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号