首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Can per‐ and polyfluoroalkyl substances (PFAS) be transferred from the common field and other commercial products during sampling? Special handling and care are always advised when collecting samples for PFAS analysis to avoid sample contamination. The potential presence of PFAS in common consumer products and in equipment typically used to collect environmental samples, coupled with the need for very low reporting limits heightens this concern. In this paper, the authors investigate what the potential for cross‐contamination is from a number of commonly used products, with the emphasis on evaluating what the possible worst‐case scenario for cross‐contamination could be. Polytetrafluoroethylene (PTFE), low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) tubing, pump bladders, and other materials are evaluated along with associated products such as aluminum foil and plastic storage bags. In the experimental design of this study, the products themselves are not analyzed directly for PFAS. Rather, a series of experiments are performed utilizing a leaching procedure to evaluate the potential for cross‐contamination and false‐positive environmental sampling results. This study was performed in a series of experimental batches over the course of a 1‐year period. Analytical results are presented along with experimental observations and recommendations.  相似文献   

2.
Per‐ and polyfluoroalkyl substances (PFAS) are fluorinated compounds and the active ingredient in aqueous film‐forming foam (AFFF). AFFF has been identified as a significant source of PFAS contamination in groundwater. PFAS are also present in many other industrial and consumer products and their manufacture and use has led to numerous contaminated sites. Human health risks have been identified with studies linking firefighter cancers to training facilities where AFFF was used. Given the widespread release of these compounds to the environment and their potential health risks, understanding their mobility characteristics is important. This article details the occurrence and behavior of these substances in groundwater systems to help guide the emerging fields of PFAS investigation and remediation. Background is presented on AFFF and PFAS source characteristics, including common industrial and consumer PFAS sources. In addition, chemical properties, sorption and retention parameters, and observed transformation properties of PFAS and related compounds are discussed. Finally, knowledge gaps are identified for future laboratory and field studies.  相似文献   

3.
The treatment of per- and polyfluoroalkyl substances (PFAS) within groundwater is an emerging topic, with various technologies being researched and tested. Currently, PFAS-impacted groundwater is typically treated ex situ using sorptive media such as activated carbon and ion exchange resin. Proven in situ remedial approaches for groundwater have been limited to colloidal activated carbon (CAC) injected into aquifers downgradient of the source zones. However, treatment of groundwater within the source zones has not been shown to be feasible to date. This study evaluated the use of CAC to treat dissolved PFAS at the air–water interface within the PFAS source zone. Studies have shown that PFAS tends to preferentially accumulate at the air–water interface due to the chemical properties of the various PFAS. This accumulation can act as a long-term source for PFAS, thus making downgradient treatment of groundwater a long-term requirement. A solution of CAC was injected at the air–water interface within the source zone at a site with PFAS contamination using direct push technology. A dense injection grid that targeted the interface between the air and groundwater was used to deliver the CAC. Concentrations of PFAS within the porewater and groundwater were collected using a series of nine lysimeters installed within the vadose and saturated water columns. A total of six PFAS were detected in the porewater and groundwater including perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). Detectable concentrations of PFAS within the pore and groundwater before treatment ranged from values greater than 300 µg/L for PFPeA to less than 3 µg/L for PFNA. Following the injection of the CAC, monitoring of the porewater and groundwater for PFAS was conducted approximately 3, 6, 9, 12, and 18 months postinjection. The results indicated that the PFAS within the porewater and groundwater at and near the air–water interface was effectively attenuated over the 1.5-year monitoring program, with PFAS concentrations being below the method detection limits of approximately 10 ng/L, with the exception of PFPeA, which was detected within the porewater during the 18-month sampling event at concentrations of up to 55 ng/L. PFPeA is a five carbon-chained PFAS that has been shown to have a lower affinity for sorption onto activated carbon compared to the longer carbon-chained PFAS such as PFOA. Examination of aquifer cores in the zone of injection indicated that the total organic carbon concentration of the aquifer increased by five orders of magnitude postinjection, with 97% of the samples collected within the target injection area containing activated carbon, indicating that the CAC was successfully delivered into the source zone.  相似文献   

4.
Sixty leading members of the scientific, engineering, regulatory, and legal communities assembled for the PFAS Experts Symposium in Arlington, Virginia on May 20 and 21, 2019 to discuss issues related to per‐ and polyfluoroalkyl substances (PFAS) based on the quickly evolving developments of PFAS regulations, chemistry and analytics, transport and fate concepts, toxicology, and remediation technologies.  The Symposium created a venue for experts with various specialized skills to provide opinions and trade perspectives on existing and new approaches to PFAS assessment and remediation in light of lessons learned managing other contaminants encountered over the past four decades. The following summarizes several consensus points developed as an outcome of the Symposium:
  • Regulatory and policy issues: The response by many states and the US Environmental Protection Agency (USEPA) to media exposure and public pressure related to PFAS contamination is to relatively quickly initiate programs to regulate PFAS sites. This includes the USEPA establishing relatively low lifetime health advisory levels for PFAS in drinking water and even more stringent guidance and standards in several states. In addition, if PFAS are designated as hazardous substances at the federal level, as proposed by several Congressional bills, there could be wide‐reaching effects including listing of new Superfund sites solely for PFAS, application of stringent state standards, additional characterization and remediation at existing sites, reopening of closed sites, and cost renegotiation among PRPs.
  • Chemistry and analytics: PFAS analysis is confounded by the lack of regulatory‐approved methods for most PFAS in water and all PFAS in solid media and air, interference with current water‐based analytical methods if samples contain high levels of suspended solids, and sample collection and analytical interference due to the presence of PFAS in common consumer products, sampling equipment, and laboratory materials.
  • Toxicology and risk: Uncertainties remain related to human health and ecological effects for most PFAS; however, regulatory standards and guidance are being established incorporating safety factors that result in part per trillion (ppt) cleanup objectives. Given the thousands of PFAS that may be present in the environment, a more appropriate paradigm may be to develop toxicity criteria for groups of PFAS rather than individual PFAS.
  • Transport and fate: The recalcitrance of many perfluoroalkyl compounds and the capability of some fluorotelomers to transform into perfluoroalkyl compounds complicate conceptual site models at many PFAS sites, particularly those involving complex mixtures, such as firefighting foams. Research is warranted to better understand the physicochemical properties and corresponding transport and fate of most PFAS, of branched and linear isomers of the same compounds, and of the interactions of PFAS with other co‐contaminants such as nonaqueous phase liquids. Many PFAS exhibit complex transport mechanisms, particularly at the air/water interface, and it is uncertain whether traditional transport principles apply to the ppt levels important to PFAS projects. Existing analytical methods are sufficient when combined with the many advances in site characterization techniques to move rapidly forward at selected sites to develop and test process‐based conceptual site models.
  • Existing remediation technologies and research: Current technologies largely focus on separation (sorption, ion exchange, or sequestration). Due to diversity in PFAS properties, effective treatment will likely require treatment trains. Monitored natural attenuation will not likely involve destructive reactions, but be driven by processes such as matrix diffusion, sorption, dispersion, and dilution.
The consensus message from the Symposium participants is that PFAS present far more complex challenges to the environmental community than prior contaminants. This is because, in contrast to chlorinated solvents, PFAS are severely complicated by their mobility, persistence, toxicological uncertainties, and technical obstacles to remediation—all under the backdrop of stringent regulatory and policy developments that vary by state and will be further driven by USEPA. Concern was expressed about the time, expense, and complexity required to remediate PFAS sites and whether the challenges of PFAS warrant alternative approaches to site cleanups, including the notion that adaptive management and technical impracticability waivers may be warranted at sites with expansive PFAS plumes. A paradigm shift towards receptor protection rather than broad scale groundwater/aquifer remediation may be appropriate.  相似文献   

5.
A bench‐scale treatability study was performed to evaluate the effectiveness of alkaline ozonation on removing per‐ and polyfluoroalkyl substances (PFAS) present in groundwater at a former industrial site in Michigan. The study involved testing the PFAS‐impacted groundwater under alkaline ozonating conditions under a range of experimental conditions, including modifying pH, hydrogen peroxide‐to‐ozone molar ratio doses, length of ozonation pretreatment times, and sampling techniques. PFAS‐spiked samples were used to determine if inorganic ions such as fluoride (F?), sulfate (SO42?), formate (HCOO?), acetate (CH3COO?), and trifluoroacetate (CF3COO?) were generated or if there were decreases in total organic fluorine resulting from PFAS treatment. The results from all tests indicate that decreases in PFAS concentrations were due to a combination of removal and destructive mechanisms with enhanced removal under acidic pH ozonation pretreatment conditions. Short‐chain PFAS concentrations increased during the experiments followed by an overall decrease in concentration under continuous alkaline ozonation conditions. Reductions in concentrations in perfluorooctane sulfonic acid of 75–97% were observed. Reductions in concentrations were also observed in other PFAS such as 6:2 FTS, PFHxS, PFOA, and PFNA. To our best knowledge, this is the first time that alkaline ozonation has been performed on PFAS‐impacted water while monitoring a larger suite of PFAS analytes in addition to destruction byproducts. Treatment of PFAS under the conditions discussed in this paper suggests that alkaline ozonation may be a viable remediation option for PFAS‐impacted waters.  相似文献   

6.
Soil and groundwater contamination by per- and polyfluoroalkyl substances (PFAS) has been a significant concern to human health and environmental quality. Remediation of contaminated sites is crucial to prevent plume expansion but can prove challenging due to the persistent nature of PFAS combined with their high aqueous mobility. In this case study, we investigated the potential of colloidal activated carbon (CAC) for soil stabilization at the pilot scale, aiming to entrap PFAS and prevent their leaching from soil into groundwater. Monitoring of the site revealed the presence of two potential sources of PFAS contamination at concentrations up to 23 μg L−1 for ∑11PFAS in groundwater. After CAC application, initial results indicated a 76% reduction of ∑11PFAS and high removal rates for long-chain PFAS, such as perfluorooctane sulfonic acid and perfluorooctanoic acid. A spike in concentrations was noticed 6 months after injection of CAC, showing a rebound of the plume and a reduction of treatment effectiveness. Based on long-term monitoring data, the treatment effectiveness for ∑11PFAS dropped to 52%. The rebound of concentrations was attributed to the plume bypass of the barrier due to the presence of high conductivity zones, which likely occurred because of seasonal changes in groundwater flow directions or the CAC application at the site. This demonstrates the need for a detailed and accurate hydrogeological understanding of contaminated sites before designing and applying stabilization techniques, especially at sites with high geologic and hydrologic complexity. The results herein can serve as a guideline for treating similar sites and help avoid potential pitfalls of remedial efforts.  相似文献   

7.
Bench-scale batch tests were conducted to assess the potential applicability of a combined separation/concentration/destruction treatment train to address soils and sediments impacted by per- and polyfluoroalkyl substances (PFAS) contamination at Schriever Space Force Base with historic aqueous film-forming foam (AFFF). Specifically, a novel treatment train coupling soil washing (for treatment of impacted soil/sediment) with foam fractionation (for treatment of the wash water [WW] generated during soil washing) and electrochemical oxidation (ECO, for treatment of the foam fractionate generated during foam fractionation) was evaluated at the bench scale using site-specific materials. Results presented herein show that the AFFF-impacted sandy soils with low organic content were amenable to treatment via soil washing. However, the removal of hydrophobic PFAS, such as perfluorooctanesulfonic acid (PFOS), from the organic-rich sediments was challenging. Results from batch desorption experiments were within a factor of 2 of those generated by soil washing bench studies, suggesting that simple batch tests can potentially be used to reasonably predict the treatment efficacy of soil washing. Long-chained perfluoroalkyl acids (PFAAs) within the WW were removed more effectively in the foam fractionation studies as compared to short-chain PFAAs. Addition of a surfactant, such as cetrimonium bromide (CTAB), enhanced foaming but only marginally improved the treatment of short-chained PFAAs and in some cases inhibited PFOS removal. ECO reduced PFAS concentrations in the foam fractionate generated during foam fractionation by several orders of magnitude. However, generation of unwanted byproducts may warrant further treatment and/or disposal. Overall, results from this study provide a novel data set highlighting the site-dependent nature of these PFAS remedial technologies and how simple, low-cost bench tests can be reliably leveraged for informed decision-making during PFAS remedial planning.  相似文献   

8.
Adaptive sampling and analysis programs (ASAPs) provide a cost-effective alternative to traditional sampling program designs. ASAPs are based on field analytical methods for rapid sample turnaround and field-based decision support for guiding the progress of the sampling program. One common objective of ASAPs is to delineate contamination present in soils, either to support feasibility studies or remedial action designs. An ASAP based on portable gas chromatograph/ mass spectrograph (GC/MS) technologies developed at Tufts University combined with decision support tools created at Argonne National Laboratory was used to delineate explosives contamination in soils at Joliet Army Ammunition Plant, Joliet, Illinois. Tufts' GC/MS technologies provided contaminant-specific identification and quantification with rapid sample turnaround and high sample throughput. Argonne's decision support tools estimated contamination extent, determined the uncertainty associated with those estimates, and indicated where sampling should continue to minimize uncertainty. In the case of Joliet, per sample analytical costs were reduced by 75 percent as compared to the cost of off-site laboratory analyses for explosives. The use of an ASAP resulted in a much more accurate identification and delineation of contaminated areas than a traditional sampling program would have with the same number of samples collected on a regular grid. While targeting explosives contamination in soils at Joliet, the ASAP technologies used in this demonstration have much broader application.  相似文献   

9.
Per‐ and polyfluoroalkyl substances (PFAS) are a class of stable compounds widely used in diverse applications. These emerging contaminants have unique properties due to carbon–fluorine (C–F) bonds, which are some of the strongest bonds in chemistry. High energy is required to break C–F bonds, which results in this class of compounds being recalcitrant to many degradation processes. Many technologies studied that have shown treatment effectiveness for PFAS cannot be implemented in situ. Chemical oxidation is a demonstrated remediation technology for in situ treatment of a wide range of organic environmental contaminants. An overview of relevant literature is presented, summarizing the use of single or combined reagent chemical oxidation processes that offer insight into oxidation–reduction chemistries potentially capable of PFAS degradation. Based on the observations and results of these studies, bench‐scale treatability tests were designed and performed to establish optimal conditions for the formation of specific free radical species, including superoxide and sulfate radicals, via various combinations of oxidants, catalysts, pH buffers, and heat to assess PFAS treatment by chemical oxidants. The study also suggests the possible abiotic transformations of some PFAS when chemical oxidation is or was used for treatment of primary organic contaminants (e.g., petroleum or chlorinated organic compounds) at a site. The bench‐scale tests utilized field‐collected samples from a firefighter training area. Much of the available data related to chemical oxidation of PFAS has only been reported for one or both of the two more commonly discussed PFAS (perfluorooctane sulfonic acid and/or perfluorooctanoic acid). In contrast, this treatability study evaluates oxidation of a diverse list of PFAS analytes. The results of this study and published literature conclude that heat‐activated persulfate is the oxidation method with the best degradation of PFAS. Limited reduction of reported PFAS concentrations in this study was observed in many oxidation reactors; however, unknown mass of PFAS (such as precursors of perfluoroalkyl acids) that cannot be identified in a field collected sample complicated quantification of how much oxidative destruction of PFAS actually occurred.  相似文献   

10.
Making remediation and risk management decisions for widely‐distributed chemicals is a challenging aspect of contaminated site management. The objective of this study is to present an initial evaluation of the ubiquitous, ambient environmental distribution of poly‐ and perfluoroalkyl substances (PFAS) within the context of environmental decision‐making at contaminated sites. PFAS are anthropogenic contaminants of emerging concern with a wide variety of consumer and industrial sources and uses that result in multiple exposure routes for humans. The combination of widespread prevalence and low screening levels introduces considerable uncertainty and potential costs in the environmental management of PFAS. PFAS are not naturally‐occurring, but are frequently detected in environmental media independent of site‐specific (i.e., point source) contamination. Information was collected on background and ambient levels of two predominant PFAS, perfluorooctane sulfonate and perfluorooctanoate, in North America in both abiotic media (soil, sediment, surface water, and public drinking water supplies) and selected biotic media (human tissues, fish, and shellfish). The background or ambient information was compiled from multiple published sources, organized by medium and concentration ranges, and evaluated for geographical trends and, when available, also compared to health‐based screening levels. Data coverage and quality varied from wide‐ranging and well‐documented for soil, surface water, and serum data to more localized and less well‐documented for sediment and fish and shellfish tissues and some uncertainties in the data were noted. Widespread ambient soil and sediment concentrations were noted but were well below human health‐protective thresholds for direct contact exposures. Surface water, drinking water supply waters (representing a combination of groundwater and surface water), fish and shellfish tissue, and human serum levels ranged from less than to greater than available health‐based threshold values. This evaluation highlights the need for incorporating literature‐based or site‐specific background into PFAS site evaluation and decision‐making, so that source identification, risk management, and remediation goals are properly focused and to also inform general policy development for PFAS management.  相似文献   

11.
Per‐ and polyfluoroalkyl substances (PFAS) have been identified by many regulatory agencies as emerging contaminants of concern in a variety of media including groundwater. Currently, there are limited technologies available to treat PFAS in groundwater with the most frequently applied approach being extraction (i.e., pump and treat). While this approach can be effective in containing PFAS plumes, previous studies of pump and treat programs have met with limited remedial success. In situ treatment studies of PFAS have been limited to laboratory and a few field studies. Six pilot‐scale field studies were conducted in an unconfined sand aquifer coimpacted by petroleum hydrocarbon along with PFAS to determine if a variety of reagents could be used to attenuate dissolved phase PFAS in the presence of petroleum hydrocarbons. The six reagents consisted of two chemical oxidants, hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8), and four adsorbents, powdered activated carbon (PAC), colloidal activated carbon (CAC), ion‐exchange resin (IER), and biochar. The reagents were injected using direct push technology in six permeable reactive zone (PRZ) configurations. Groundwater concentrations of various PFAS entering the PRZs ranged up to 24,000 µg/L perfluoropentanoic acid, up to 6,200 µg/L pentafluorobenzoic acid, up to 16,100 µg/L perfluorohexanoic acid, up to 6,080 µg/L perfluoroheptanoic acid, up to 450 µg/L perfluorooctanoic acid, and up to 140 µg/L perfluorononanoic acid. Performance groundwater sampling within and downgradient of the PRZs occurred for up to 18 months using single and multilevel monitoring wells. Results of groundwater sampling indicated that the PFAS were not treated by either the persulfate nor the peroxide and, in some cases, the PFAS increased in concentration immediately following the injection of peroxide and persulfate. Concentrations of PFAS in groundwater sampled within the PAC, CAC, IER, and biochar PRZs immediately after the injection were determined to be less than the method detection limits. Analyses of groundwater samples over the 18‐month monitoring period, indicated that all the PRZs exhibited partial or complete breakthrough of the PFAS over the 18‐month monitoring period, except for the CAC PRZ which showed no PFAS breakthrough. Analysis of cores for the CAC, PAC, and biochar PRZs suggested that the CAC was uniformly distributed within the target injection zone, whereas the PAC and biochar showed preferential injection into a thin coarse‐sand seam. Similarly, analysis of the sand packs of monitoring wells installed before the injection of the CAC, PAC, and biochar indicated that the sand packs of the PAC and biochar preferentially accumulated the reagents compared with the reagent concentrations within the surrounding aquifer by up to 18 times.  相似文献   

12.
Established groundwater contaminants such as chlorinated solvents and hydrocarbons have impacted groundwater at hundreds of thousands of sites around the United States and have been responsible for multibillion dollar remediation expenditures. An important question is whether groundwater remediation for the emerging contaminant class comprised of per‐ and polyfluoroalkyl substances (PFAS) will be a smaller, similar, or a larger‐scale problem than the established groundwater contaminants. A two‐pronged approach was used to evaluate this question in this paper. First, nine quantitative scale‐of‐remediation metrics were used to compare PFAS to four established contaminants: chlorinated solvents, benzene, 1,4‐dioxane, and methyl tert‐butyl ether. These metrics reflected the prevalence of the contaminants in the U.S., attenuation potential, remediation difficulty, and research intensity. Second, several key challenges identified with PFAS remediation were evaluated to see similar situations (qualitative analogs) that have been addressed by the remediation field in the past. The results of the analysis show that four out of nine of the evaluated quantitative metrics (production, number of potential sites, detection frequency, required destruction/removal efficiency) indicate that the scale of PFAS groundwater remediation may be smaller compared to the current scale of remediation for conventional groundwater contaminants. One attenuation metric, median plume length, suggests that overall PFAS remediation could pose a greater challenge compared to hydrocarbon sites, but only slightly larger than chlorinated volatile organic compounds sites. The second attenuation metric, hydrophobic sorption, was not definitive regarding the potential scale of PFAS remediation. The final three metrics (regulatory criteria, in‐situ remediation capability, and research intensity) all indicate that PFAS remediation might end up being a larger scale problem than the established contaminants. An assessment of the evolution of groundwater remediation capabilities for established contaminants identified five qualitative analogs for key PFAS groundwater remediation issues: (a) low‐level detection analytical capabilities; (b) methods to assess the risk of complex chemical mixtures; (c) nonaqueous phase dissolution as an analog for partitioning, precursors, and back diffusion at PFAS sites; (d) predictions of long plume lengths for emerging contaminants; and (e) monitored natural attenuation protocols for other non‐degrading groundwater contaminants. Overall the evaluation of these five analogs provided some comfort that, while remediating the potential universe of PFAS sites will be extremely challenging, the groundwater community has relevant past experience that may prove useful. The quantitative metrics and the qualitative analogs suggest a different combination of remediation approaches may be needed to deal with PFAS sites and may include source control, natural attenuation, in‐situ sequestration, containment, and point‐of‐use treatment. However, as with many chlorinated solvent sites, while complete restoration of PFAS sites may be uncommon, it should be possible to prevent excessive exposure of PFAS to human and ecological receptors.  相似文献   

13.
Per‐ and polyfluoroalkyl substances (PFAS) are highly resistant to biotic and abiotic degradation and can withstand very high temperatures before breaking down. The storage of PFAS‐impacted water and sediments in a holding pond or stockpiled investigation or remedial action‐derived waste is occurring on an increasing number of sites. The most common PFAS water treatment options include granular‐activated carbon and resins and the most common soil treatment options have been primarily limited to excavation, offsite incineration, and, in some cases, soil stabilization. An increasing number of states across the United States are establishing part per trillion PFAS guidance levels for drinking water. Removing PFAS from soils removes PFAS source impacts to groundwater. In this study, volatilization of PFAS from soil treated using in situ thermal heating is evaluated as a treatment method to achieve a high degree of PFAS removal from soils. The evaluation of temperatures needed to achieve removal is described. To minimize vapor treatment required for PFAS thermal remediation, a scrubber was incorporated into the treatment train to transfer PFAS to the liquid phase in a concentrated, low‐volume solution. Vapor‐liquid equilibrium behavior and the extent of PFAS volatilization from impacted soil over a range of temperatures were evaluated. Results showed that heating soil to 350°C and 400°C reduces PFAS soil concentrations by 99.91% and 99.998%, respectively. It was also confirmed that sulfonate‐based PFAS generally required higher temperatures for volatilization to occur than carboxylate‐based PFAS.  相似文献   

14.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

15.
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic compounds that have emerged as chemicals of concern in drinking water and groundwater. Typically, such waters are treated to remove PFAS by passing the water through a bed of sorbent material (e.g., activated carbon and anion exchange resins [AIX]). However, the efficacy of these sorbents varies depending on the types and concentrations of PFAS, in addition to water quality conditions such as organic matter content and conductivity (ionic strength). The choice of sorbent material to effectively treat PFAS in complex natural waters will, therefore, depend upon site water quality and PFAS conditions. To help inform these decisions, a series of evaluations using a rapid small-scale column test approach was conducted with two sorbent materials (a granulated activated carbon [GAC] and an AIX), individually and combined, under conditions where conductivity, pH, and organic carbon concentrations were varied in a semifactorial approach. Artificial groundwater batches were prepared to meet these test conditions and spiked with six PFAS compounds (perfluorobutane sulfonic acid [PFBS], perfluorobutanoic acid [PFBA], perfluorohexane sulfonic acid [PFHxS], perfluorohexanoic acid [PFHxA], perfluorooctane sulfonic acid [PFOS], and perfluorooctanoic acid [PFOA]), passed through small columns packed with ground sorbent material for ∼30,000 bed volumes of water for single sorbent treatments and ∼20,000 bed volumes for combined sorbent treatments, during which samples of effluent were captured and analyzed to quantify breakthrough of PFAS from the sorbent materials over time. AIX was found to be more effective than GAC at removing the tested perfluoroalkyl sulfonic acids (PFBS, PFHxS, and PFOS), but GAC was similarly or more effective than AIX at removing perfluorocarboxylic acids (PFBA, PFHxA, and PFOA) under high conductivity conditions. Overall, the efficacy of AIX at removing PFAS was more strongly impacted by organic carbon and conductivity than GAC, while pH had less of an effect on either sorbent's efficacy compared to the other test conditions.  相似文献   

16.
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination.  相似文献   

17.
Because of the remarkable chemical structure of perfluoroalkyl and polyfluoroalkyl substances (PFAS), as well as the complex conditions of water, selecting an appropriate adsorbent for treating PFAS is critical. Adsorption needs to be environmentally friendly, low cost, and consider the types of adsorbents that work well in mixed PFAS solutions. In the present study, we used mixed PFAS to estimate the PFAS activity. This research aimed to evaluate and compare the efficacy of the adsorption of PFAS from water using different adsorbents: granular activated carbon (GAC), IRA 910 (strong anion resin), and DOWEX MB-50 (mixed exchange resin). Batch adsorption isotherms and kinetic studies were performed for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS). Freundlich models consistently described the kinetic behavior with a high correlation coefficient (R2 > 0.98). PFAS adsorption capacities on GAC and IRA910 were dependent on the chain length (PFOS > PFOA > PFHxS). The adsorption capacity of DOWEX MB-50 decreased because of the sulfonate effects (PFOS > PFHxS > PFOA). The rate constants (k2) that represented the adsorption of PFAS on different adsorbents observed within 96 h were accurately determined by the pseudo-second-order (PSO) model. GAC achieved followed the relationship k2(PFOS) > k2(PFOA) > k2(PFHxS). Furthermore, k2 of IRA910 decreased in the order of k2(PFOA) > k2(PFOS) > k2(PFHxS), implying that IRA910 promoted hydrophobicity more significantly on the adsorption of PFCAs than perfluoroalkane (-alkyl) sulfonic acids. The kinetics of DOWEX MB-50 revealed k2(PFHxS) > k2(PFOS) > k2(PFOA) because gel-type resins like DOWEX MB-50 are more suitable for shorter-chain PFAS. Further investigation is needed to determine the effect of organic matter under natural conditions and evaluate adsorptive selection caused by operational complexities.  相似文献   

18.
Locating and quantifying free-phase volatile organic compounds (VOCs) in the subsurface represent one of the more difficult challenges facing hazardous waste site remediation programs. Successful remediation programs require reliable data on the size and extent of potential VOC contamination sources. Improving subsurface quantification of VOCs requires a large number of reliable low-cost samples. Satisfying this objective relies on improved sampling techniques, field analysis of samples, and a modified quality assurance program. This paper describes an integrated approach using conventional split-spoon samplers, microcore sampling, hexane extractions, and a field gas chromatograph with an autosampler as part of a technical demonstration for innovative remediation technologies. Using this approach, it was possible to delineate a subsurface source of free-phase VOCs at a cost of $15 per sample. The distribution of dense nonaqueous phase liquid determined by this sampling approach agreed with the conceptual model for the site.  相似文献   

19.
Regional groundwater vulnerability maps to indicate the impact of leaching of chemicals under different management scenarios were prepared for the Rattaphum Catchment using several leaching models and GIS techniques. The Attenuation Factor (AF) model was used to simulate the leaching potential of several pesticides for selected soils in the catchment under different rates of recharge from irrigation. The LEACHN model was used to simulate the NO3 leaching potential and LEACHP was used to simulate leaching potential of metolachlor under different management scenarios. The results showed that only a small number of pesticides have the potential to contaminate the shallow groundwater. However, the risk of contamination with nutrients is much higher due to the mobility and conservative nature of the NO3 . The LEACHP results indicated that the intensive use of agrochemicals in the vegetable growing area, especially during the rainy season when the groundwater is near the surface, increases the risk of pesticide contamination. The results of upscaling from the farm to the catchment scale using soil maps and GIS techniques under various management scenarios and chemical application rates showed that the most effective strategy to reduce chemical leaching is by reducing pesticide application rates and optimizing the application of irrigation water. The identification of potential high risk farms by ranking soils and agricultural practices could be used to formulate management practices that reduce pesticide contamination of the surface and ground water resources in the area.  相似文献   

20.
The Capital Region of Denmark tested the Multi Increment Sampling® (MIS) technology at 14 children's playgrounds in the region to assess whether the method provides representative test results and an improved foundation for risk assessment. The purpose of the investigation was to determine whether the previous uses of the playground areas have led to soil contamination that poses a health risk to its current users (children). The unpaved areas of the playgrounds were divided into decision units based on historical data along with the expected patterns of movement from its users. The samples from each unit consisted of 45 to 100 increments were collected from three depths within the upper one‐half meter. Furthermore, triplicate samples were taken from the upper sampling depth in at least one unit for quality control purposes. The investigation results showed excellent consistency between the pollution parameters and contamination levels in different decision units for each playground. The decision units where high levels of soil contamination exist coincide well with the previous site history. The MIS method has proven to be expensive and time consuming. However, in the future it will be easier to implement as we gain more experience with use of this method.  ©2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号