首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vapor intrusion risk characterization efforts are challenging due to complexities associated with background indoor air constituents, preferential subsurface migration pathways, and representativeness limitations associated with traditional randomly timed time‐integrated sampling methods that do not sufficiently account for factors controlling concentration dynamics. The U.S. Environmental Protection Agency recommends basing risk related decisions on the reasonable maximum exposure (RME). However, with very few exceptions, practitioners have not been applying this criterion. The RME will most likely occur during upward advective flux conditions. As such, for RME determinations, it is important to sample when upward advective flux conditions are occurring. The most common vapor intrusion assessment efforts include randomly timed sample collection events, and therefore do not accurately yield RME estimates. More specifically, researchers have demonstrated that randomly timed sampling schemes can result in false negative determinations of potential risk corresponding to RMEs. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as there is a critical need for rapid response to exposure exceedances to minimize health risks and liabilities. To address these challenges, continuous monitoring platforms have been deployed to monitor indoor concentrations of key volatile constituents, atmospheric pressure, and pressure differential conditions that can result in upward toxic vapor transport and entry into overlying buildings. This article demonstrates how vapor intrusion RME‐based risks can be successfully and efficiently determined using continuous monitoring of concentration and parameters indicating upward advective chemical flux. Time series analyses from multiple selected 8‐ and 24‐hr time increments during upward advective TCE flux conditions were performed to simulate results expected from the most commonly employed sampling methods. These analyses indicate that, although most of the selected time increments overlap within the same 24‐hr window, results and conclusions vary. As such, these findings demonstrate that continuous monitoring of concentration and parameters such as differential pressure and determination of a time‐weighted concentration average over a selected duration when upward advective flux is occurring can allow for a realistic RME‐based risk estimate.  相似文献   

2.
Soil gas vapor intrusion (VI) emerged in the 1990s as one of the most important problems in the investigation and cleanup of thousands of sites across the United States. A common practice for sites where VI has been determined to be a significant pathway is to implement interim building engineering controls to mitigate exposure of building occupants to VI while the source of contamination in underlying soil and groundwater is assessed and remediated. Engineering controls may include passive barriers, passive or active venting, subslab depressurization, building pressurization, and sealing the building envelope. Another recent trend is the emphasis on “green” building practices, which coincidentally incorporate some of these same engineering controls, as well as other measures such as increased ventilation and building commissioning for energy conservation and indoor air quality. These green building practices can also be used as components of VI solutions. This article evaluates the sustainability of engineering controls in solving VI problems, both in terms of long‐term effectiveness and “green” attributes. Long‐term effectiveness is inferred from extensive experience using similar engineering controls to mitigate intrusion of radon, moisture, mold, and methane into structures. Studies are needed to confirm that engineering controls to prevent VI can have similar long‐term effectiveness. This article demonstrates that using engineering controls to prevent VI is “green” in accelerating redevelopment of contaminated sites, improving indoor air quality, and minimizing material use, energy consumption, greenhouse gas emissions, and waste generation. It is anticipated that engineering controls can be used successfully as sustainable solutions to VI problems at some sites, such as those deemed technically impracticable to clean up, where remediation of underlying soil or groundwater contamination will not be completed in the foreseeable future. Furthermore, green buildings to be developed in areas of potential soil or groundwater contamination may be designed to incorporate engineering controls to prevent VI. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Sampling indoor air for potential vapor‐intrusion impacts using current standard 24‐hour sample collection methods may not adequately account for temporal variability and detect contamination best represented by long‐term sampling periods. Henry Schuver of the U.S. Environmental Protection Agency Office of Solid Waste stated at the September 2007 Air & Waste Management Association vapor‐intrusion conference that the US EPA may consider recommending longer‐term vapor sampling to achieve more accurate time‐weighted‐average detections. In November 2007, indoor air at four residences was sampled to measure trichloroethene (TCE) concentrations over short‐ and long‐duration intervals. A carefully designed investigation was conducted consisting of triplicate samplers for three different investigatory methods: dedicated 6‐liter Summa canisters (US EPA Method TO‐15), pump/sorbent tubes (US EPA Method TO‐17), and passive diffusion samplers (MDHS 80). The first two methods collected samples simultaneously for a 24‐hour period, and the third method collected samples for two weeks. Data collected using Methods TO‐15 (canisters) and TO‐17 (tubes) provided reliable short‐duration TCE concentrations that agree with prior 24‐hour sampling events in each of the residences; however, the passive diffusion samplers may provide a more representative time‐weighted measurement. The ratio of measured TCE concentrations between the canisters and tubes are consistent with previous results and as much as 28.0 μg/m3 were measured. A comparison of the sampling procedures, and findings of the three methods used in this study will be presented. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
The decision to mitigate exposures from vapor intrusion (VI) is typically based on limited data from 24‐hour air samples. It is well documented that these data do not accurately represent long‐term average exposures linked to adverse health effects. Limited decision guidance is currently available to determine the most appropriate sampling strategy, considering the cost of sampling alternatives along with the economic consequences of exposure‐related health effects. We present a decision model that introduces economic and statistical considerations in evaluating alternative VI sampling methods. The model characterizes the best sampling method by factoring economic and health consequences of exposure, the variability of exposure, the cost of sampling and mitigation, and the likelihood of false‐negatives and false‐positives. Decision‐makers can use results to select the sample size that maximizes net benefit. Conceptual and mathematical models are presented linking biological, statistical, and economic considerations to assess the cost and effectiveness of different sampling strategies. The model relates an average exposure concentration, determined statistically, to abatement costs and to the monetary value of health deterioration. The value of the information provided by different strategies is calculated and used to select the optimum sampling method. Simulations show that longer‐term sampling methods tend to be more accurate and cost‐effective than short‐term samples. The ideal sampling strategy shows significant seasonal variation (it is typically optimal to use longer samples in the winter) and also varies significantly with the stringency of regulatory standards. Longer‐term sample collection provides a more accurate representation of average VI exposure and reduces the likelihood of type I and type II errors. This reduces expected costs of mitigation and exposure (e.g., health consequences, legal and regulatory penalties), which in some cases can be quite significant. The model herein shows how these savings are balanced against the additional costs of longer‐term sampling.  相似文献   

5.
Conventional vapor intrusion characterization efforts can be challenging due to background indoor air constituents, preferential subsurface migration pathways, sampling access, and collection method limitations. While it has been recognized that indoor air concentrations are dynamic, until recently it was assumed by many practitioners that subsurface concentrations did not vary widely over time. Newly developed continuous monitoring platforms have been deployed to monitor subsurface concentrations of methane, carbon dioxide, oxygen, hydrogen sulfide, total volatile organic constituents, and atmospheric pressure. These systems have been integrated with telemetry, geographical information systems, and geostatistical algorithms for automatically generating two‐ and three‐dimensional contour images and time‐stamped renderings and playback loops of sensor attributes, and multivariate analyses through a cloud‐based project management platform. The objectives at several selected sites included continuous monitoring of vapor concentrations and related physical parameters to understand explosion risks over space and time and to then design a long‐term risk reduction strategy. High‐frequency data collection, processing, and automated visualization have resulted in greater understanding of natural processes, such as dynamic contaminant vapor intrusion risk conditions potentially influenced by localized barometric pumping. For instance, contemporaneous changes in methane, oxygen, and atmospheric pressure values suggest there is interplay and that vapor intrusion risk may not be constant. As a result, conventional single‐event and composite assessment technologies may not be capable of determining worst‐case risk scenarios in all cases, possibly leading to misrepresentation of receptor and explosion risks. While dynamic risk levels have been observed in several initial continuous monitoring applications, questions remain regarding whether these situations represent special cases and how best to determine when continuous monitoring should be required. Results from a selected case study are presented and implications derived. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
The United States Environmental Protection Agency is considering recommending longer‐term sampling to achieve more accurate time‐weighted‐average detections for indoor air monitoring of volatile organic chemicals. The purpose of the research presented herein was to compare longer sampling times using passive diffusion samplers to the results from shorter‐term testing periods using sorbent tubes and low‐flow pumps (US EPA Method TO‐17) at great frequency for trichloroethene (TCE) in indoor air. A controlled release of TCE in a large room allowed for over two‐orders‐of‐magnitude daily concentration variability over the course of the two‐week monitoring event. The daily concentration measurements by US EPA Method TO‐17 and the passive diffusion samplers were performed in triplicate and had excellent reproducibility. The results of daily tests were averaged and compared with four passive diffusion devices exposed to indoor air for three, seven, ten, and fourteen days in accordance with ASTM D6196‐02. A specific uptake rate for each of the passive devices at the four different time intervals and the statistical significance of the time‐varying uptake rates were evaluated. The performance of each passive diffusion device was determined using a statistical performance criterion. The average concentration for all of the exposure periods could be reliably predicted using the established uptake rates for two of the four passive devices. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Reviews including the latest “data‐rich” chemical vapor intrusion‐radon (CVI‐Rn) studies indicate buildings/times can be “screened‐in” as having Rn‐evident‐susceptibility/priority for soil gas intrusion, and elevated‐potential for CVI concerns, or not. These screening methods can supplement conventional indoor‐air chemical sampling, under naturally varying conditions, by prioritizing buildings and times based on indoor Rn levels. Rn is a widespread, naturally occurring component of soil gas and a tracer of soil gas intrusion into the indoor air of overlying buildings. Rn is also an indicator for generally similar behavior of other components of near‐building soil gas, possibly including chemical contaminant vapors. Indoor Rn is easily measured at a low cost, allowing continuous observations from essentially all buildings with the potential for CVI across time. This presents cost savings and other benefits for all CVI stakeholders.  相似文献   

8.
Regulatory requirements for the evaluation of vapor intrusion vary significantly among states. For site owners and responsible parties that have sites in different regulatory jurisdictions, one challenge is to know and understand how the requirements or expectations for vapor intrusion differ from one jurisdiction to the next. Differences in requirements can make it difficult to manage sites in a consistent manner across jurisdictions. Eklund, Folkes, et al. (2007, February, Environmental Manager, 10–14) published an overview of state guidance for vapor intrusion in 2007 that provided a detailed summary of pathway screening values and other key vapor intrusion policies. An update by Eklund, Beckley, et al. (2012, Remediation, 22, 7–20) was published in 2012, which expanded the evaluation to additional states. Since that time, numerous states have substantially revised their guidance and some states that did not have vapor intrusion‐specific guidance have issued new guidance. This article provides an update to the 2012 study. For each state, the review includes tabulations of the types of screening values included (e.g., groundwater, soil, soil gas, indoor air) and the screening values for selected chemicals that commonly drive vapor intrusion investigations (i.e., trichloroethylene [TCE], tetrachloroethylene, and benzene) along with other compounds of potential interest. In addition, for each state, the article summarizes a number of key policy decisions that are important for the investigation of vapor intrusion including: distance screening criteria, default subsurface to indoor air attenuation factors, mitigation criteria, and policies for evaluation of short‐term TCE exposure.  相似文献   

9.
Investigations at former dry cleaning sites in Denmark show that sewer systems often are a major vapor intrusion pathway for chlorinated solvents to indoor air. In more than 20 percent of the contaminated drycleaner sites in Central Denmark Region, sewer systems were determined to be a major vapor intrusion pathway. Sewer systems can be a major intrusion pathway if contaminated groundwater intrudes into the sewer and contamination is transported within the sewer pipe by water flow in either free phase or dissolved states. Additionally, the contamination can volatilize from the water phase or soil gas can intrude the sewer system directly. In the sewer, the gas phase can migrate in any direction by convective transport or diffusion. Indications of the sewer as a major intrusion pathway are:
  • higher concentrations in the upper floors in buildings,
  • higher concentrations in indoor air than expected from soil gas measurements,
  • higher concentrations in bathrooms/kitchen than in living rooms,
  • chlorinated solvents in the sewer system, and
  • a pressure gradient from the sewer system to indoor air.
Measurements to detect whether or not the sewer system is an intrusion pathway are simple. In Central Denmark Region, the concentrations of contaminants are routinely measured in the indoor air at all floors, the outdoor air, behind the water traps in the building, and in the manholes close to the building. The indoor and outdoor air concentration, as well as concentrations in manholes, are measured by passive sampling on sorbent samplers over a 14‐day period, and the measurements inside the sewer system are carried out by active sampling using carbon tubes (sorbent samplers). Furthermore, the pressure gradient over the building slab and between the indoor air and the sewer system are also measured. A simple test is depressurization of the sewer system. Using this technique, the pressure gradient between the sewer system and the indoor air is altered toward the sewer system—the contamination cannot enter the indoor air through the sewer system. If the sewer system is a major intrusion pathway, the effect of the test can be observed immediately in the indoor air. Remediation of a sewer transported contamination can be:
  • prevention of the contaminants from intruding into the sewer system or
  • prevention of the contaminated gas in the sewer system from intruding into the indoor air.
Remediation techniques include the following:
  • lining of the sewer piping to prevent the contamination from intruding into the sewer;
  • sealing the sewer system in the building to prevent the contamination from the sewer system to intrude the indoor air;
  • venting of manholes; and
  • depressurizing the sewer system.
  相似文献   

10.
Groundwater at the former Serry's Dry Cleaning site in Corvallis, Oregon, was impacted by chlorinated volatile organic compounds (CVOCs). The primary CVOCs impacting the site include tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride, which were detected at concentrations up to 22,000, 1,700, 3,100, and 7 μg/L, respectively, prior to treatment. Large seasonal fluctuations in groundwater CVOC concentrations indicated that a significant fraction of the CVOC mass was present in the smear zone. Field‐scale pilot tests were performed for the Oregon Department of Environmental Quality's Dry Cleaner Program to evaluate the performance of EHC® in situ chemical reduction (ISCR) technology. The pilot study involved evaluating field performance and physical distribution into low‐permeability soil using basic Geoprobe® injection tooling. The testing results confirmed that bioremediation enhanced by ISCR supported long‐term treatment at the site. This article describes the implementation and results of the tests. Performance data are available from a three‐year period following the injections, allowing for a discussion about sustained performance and reagent longevity. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
This article summarizes a long‐term study of vapor intrusion mitigation system performance in a historic, unoccupied residential duplex with an extensive set of temporal variability observations. The experimental design included multiple cycles of subslab depressurization (SSD) system operation and shut‐off during a seven‐month period, followed by a year‐long period of continuous operation. Results showed that the system provided rapid pressure field extension and radon control as much as 100 days of operation before optimum volatile organic compound (VOC) mitigation was achieved. Greater variability in VOC concentrations than in radon concentrations was observed during the initial mitigation system cycling. Subslab VOC concentrations at numerous locations increased during this initial period of SSD operation, and indoor air VOC concentrations were more variable than radon. However, indoor air concentrations were considerably less variable (and lower) during the first year of continuous mitigation system operation. ©2015 Wiley Periodicals, Inc.  相似文献   

12.
Vapor intrusion characterization and response efforts must consider four key interactive factors: background indoor air constituents, preferential vapor migration pathways, complex patterns of vapor distribution within buildings, and temporal concentration variability caused by pressure differentials within and exterior to structures. An additional challenge is found at sites contaminated by trichloroethylene (TCE), which in the United States has very low indoor air screening levels due to acute risk over short exposure durations for sensitive populations. Timely and accurate characterization of vapor intrusion has been constrained by traditional passive time‐averaging sampling methods. This article presents three case studies of a robust new methodology for vapor intrusion characterization particularly suited for sites where there is a critical need for rapid response to exposure exceedances to minimize health risks and liabilities. The new methodology comprises low‐detection‐level field analytical instrumentation with grab sample and continuous monitoring capabilities for key volatile constituents integrated with pressure differential measurements and web‐based reporting. The system also provides automated triggered alerts to project teams and capability for integration with engineered systems for vapor intrusion control. The three case studies illustrate key findings and lessons learned during system deployment at two sites undergoing characterization studies and one site undergoing thermal remediation of volatile contaminants.  相似文献   

13.
Vapor intrusion characterization efforts are challenging due to complexities associated with indoor background sources, preferential subsurface migration pathways, indoor and shallow subsurface concentration dynamics, and representativeness limitations associated with manual monitoring and characterization methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to acute toxicity threshold exceedances is critical in order to minimize health risks and associated liabilities. Currently accepted discrete time‐integrated vapor intrusion monitoring methods that employ passive diffusion–adsorption and canister samplers often do not result in sufficient temporal or spatial sampling resolution in dynamic settings, have a propensity to yield false negative and false positive results, and are not able to prevent receptors from acute exposure risks, as sample processing times exceed exposure durations of concern. Multiple lines of evidence have been advocated for in an attempt to reduce some of these uncertainties. However, implementation of multiple lines of evidence do not afford rapid response capabilities and typically rely on discrete time‐integrated sample collection methods prone to nonrepresentative results due to concentration dynamics. Recent technology innovations have resulted in the deployment of continuous monitoring platforms composed of multiplexed laboratory grade analytical components integrated with quality control features, telemetry, geographical information systems, and interpolation algorithms for automatically generating geospatial time stamped renderings and time‐weighted averages through a cloud‐based data management platform. Automated alerts and responses can be engaged within 1 minute of a threshold exceedance detection. Superior temporal and spatial resolution also results in optimized remediation design and mitigation system performance confirmation. While continuous monitoring has been acknowledged by the regulatory community as a viable option for providing superior results when addressing spatial and temporal dynamics, until very recently, these approaches have been considered impractical due to cost constraints and instrumentation limitations. Recent instrumentation advancements via automation and multiplexing allow for rapid and continuous assessment and response from multiple locations using a single instrument. These advancements have reduced costs to the point where they are now competitive with discrete time‐integrated methods. In order to gain more regulatory and industry support for these viable options, there is an immediate need to perform a realistic cost comparison between currently approved discrete time‐integrated methods and newly fielded continuous monitoring platforms. Regulatory support for continuous monitoring platforms will result in more effectively protecting the public, provide property owners with information sufficient to more accurately address potential liabilities, reduce unnecessary remediation costs for situations where risks are minimal, lead to more effective and surgical remediation strategies, and allow practitioners to most effectively evaluate remediation system performance. To address this need, a series of common monitoring scenarios and associated assumptions were derived and cost comparisons performed. Scenarios included variables such as number of monitoring locations, duration, costs to meet quality control requirements, and number of analyses performed within a given monitoring campaign. Results from this effort suggest that for relatively larger sites where five or more locations will be monitored (e.g., large buildings, multistructure industrial complexes, educational facilities, or shallow groundwater plumes with significant spatial footprints under residential neighborhoods), procurement of continuous monitoring services is often less expensive than implementation of discrete time‐integrated monitoring services. For instance, for a 1‐week monitoring campaign, costs‐per‐analysis for continuous monitoring ranges from approximately 1 to 3 percent of discrete time‐integrated method costs for the scenarios investigated. Over this same one‐week duration, for discrete time‐integrated options, the number of sample analyses equals the number of data collection points (which ranged from 5 to 30 for this effort). In contrast, the number of analyses per week for the continuous monitoring option equals 672, or four analyses per hour. This investigation also suggests that continuous automated monitoring can be cost‐effective for multiple one‐week campaigns on a quarterly or semi‐annual basis in lieu of discrete time‐integrated monitoring options. In addition to cost benefits, automated responses are embedded within the continuous monitoring service and, therefore, provide acute TCE risk‐preventative capabilities that are not possible using discrete time‐integrated passive sampling methods, as the discrete time‐integrated services include analytical efforts that require more time than the exposure duration of concern. ©2016 Wiley Periodicals, Inc.  相似文献   

14.
Vapor intrusion characterization efforts can be challenging due to complexities associated with background indoor air constituents, preferential subsurface migration pathways, and response time and representativeness limitations associated with conventional low‐frequency monitoring methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to exposure exceedances becomes critical in order to minimize health risks and associated liabilities. Continuous monitoring platforms have been deployed to monitor indoor and subsurface concentrations of key volatile constituents, atmospheric pressure, and pressure differential conditions that can result in advective transport. These systems can be comprised of multiplexed laboratory‐grade analytical components integrated with telemetry and geographical information systems for automatically generating time‐stamped renderings of observations and time‐weighted averages through a cloud‐based data management platform. Integrated automatic alerting and responses can also be engaged within one minute of risk exceedance detection. The objectives at a site selected for testing included continuous monitoring of vapor concentrations and related surface and subsurface physical parameters to understand exposure risks over space and time and to evaluate potential mechanisms controlling risk dynamics which could then be used to design a long‐term risk reduction strategy. High‐frequency data collection, processing, and automated visualization efforts have resulted in greater understanding of natural processes such as dynamic contaminant vapor intrusion risk conditions potentially influenced by localized barometric pumping induced by temperature changes. For the selected site, temporal correlation was observed between dynamic indoor TCE vapor concentration, barometric pressure, and pressure differential. This correlation was observed with a predictable daily frequency even for very slight diurnal changes in barometric pressure and associated pressure differentials measured between subslab and indoor regimes and suggests that advective vapor transport and intrusion can result in elevated indoor TCE concentrations well above risk levels even with low‐to‐modest pressure differentials. This indicates that vapor intrusion can occur in response to diurnal pressure dynamics in coastal regions and suggests that similar natural phenomenon may control vapor intrusion dynamics in other regions, exhibiting similar pressure, geochemical, hydrogeologic, and climatic conditions. While dynamic indoor TCE concentrations have been observed in this coastal environment, questions remain regarding whether this hydrogeologic and climatic setting represent a special case, and how best to determine when continuous monitoring should be required to most appropriately minimize exposure durations as early as possible. ©2017 Wiley Periodicals, Inc.  相似文献   

15.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

16.
Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Tetrachloroethene (PCE) releases at a former dry cleaner resulted in impacts to soil and shallow groundwater beneath and adjacent to the building. Subsurface impacts led to vapor intrusion with PCE concentrations between 900 and 1,200 micrograms per cubic meter (μg/m3) in indoor air. The migration pathways of impacted soil vapor were evaluated through implementation of a helium tracer test and vapor sampling of an exterior concrete block wall. Results confirmed that the concrete block wall acted as a conduit for vapor intrusion into the building. A combination of remediation efforts focused on mass reduction in the source area as well as mitigation efforts to inhibit vapor migration into the building. Excavation of soils beneath the floor slab and installation of a spray‐applied vapor barrier resulted in PCE concentrations in indoor air decreasing by over 97.9 percent. Operation of an active ventilation system installed under the floor slab and groundwater remediation via injections of nano‐scale zero valent iron (nZVI) further reduced PCE concentrations in indoor air by over 99.8 percent compared to baseline conditions. While significant reductions of PCE concentrations in groundwater were observed within two months after injection, maximum reductions to PCE concentrations in indoor air were not observed for an additional 12 months. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
While ecologists have used food‐web models to understand how ecosystems function, the potential role of integrated food‐web and population‐based models in environmental monitoring and decision making has been ignored. Sound ecological principles should be integrated with state‐of‐the‐art monitoring and management practices. This article presents the ways in which population‐based models can answer basic ecological questions necessary for decision making about remediation and restoration, and for monitoring to ensure long‐term stewardship. Discussed are the uses of food‐web and population‐based models for understanding the movement of chemicals through different trophic levels. Three examples, including global warming, tributyltin, and monomethylmercury scenarios, are presented to illustrate how such models are useful. The responses of the component parts varies, depending on parameters such as birth, death, and respiration, as well as feeding rates, predator‐prey rates, and uptake and elimination rates. There are several different models available for decision making, with different levels of complexity, based on the specific hypothesis or question being asked and the amount of current information available. Therefore, it is recommended to use deterministic‐based, population‐based food‐web models for ecological risk assessment. © 2001 John Wiley & Sons, Inc.  相似文献   

19.
This article quantifies the nature, frequency, and cost of environmental remediation activities for onshore oil and gas operations, as determined from over 4,100 environmental remediation cases in Texas, Kansas, New Mexico, and Colorado. For the purpose of this article, “remediation'' refers to cleanup efforts that entail longer‐term site characterization, monitoring, and remedial action beyond the initial spill cleanup or emergency response stage. In addition, data are also presented regarding short‐term spill cleanup activities in two of the four states. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
The effects of poor indoor air quality and mould growth in working environment are major problems in built environment, and there is a need to look for improvement of the health, comfort and productivity of the building occupants. Airborne mould sampling studies were conducted in a reference building located in Rockhampton, Central Queensland, Australia. Both indoor culturable and mould spore levels were observed. It was found through the indoor–outdoor ratios of the species that indoor concentrations are mostly related to the outdoor mould levels. The moulds differ in their relative humidity and temperature requirements to support surface growth. Indoor humidity has a significant effect on occupants comfort, perceived air quality, occupants’ health, building durability, emissions and energy efficiency. Practical hygrothermal simulation models are employed to analyse the combined heat and moisture behaviour within the built environment. A review of the current modelling options available to predict building performance based on energy and mass transport simulation is presented, and then a case study is presented with the assessment of indoor built environment to avoid mould problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号