首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean protein is a potential material for manufacturing of biodegradable plastics. The objective of this investigation was to characterize the thermal and mechanical properties of plastics made from sodium dodecyl sulfate (SDS)-modified soy proteins. Soy protein isolate (SPI) was prepared from defatted soy flour, modified with various concentrations of SDS, and then molded into plastics. The temperatures of denaturation of the modified soy protein increased at low SDS concentration and then decreased at high SDS concentration. At the same SDS concentration, the plastics molded from the modified soy proteins showed a similar temperature of denaturation, but a lower enthalpy of denaturation compared to the modified soy protein. Young's modulus of the plastics decreased as SDS concentration increased, and the tensile strength and strain at break of the plastics reached a maximum value at 1% SDS modification. Two glass transition temperatures were identified corresponding to the 7S and 11S globulins in SPI by dynamic mechanical analysis, and they decreased as SDS concentration increased. The SDS modification increased the water absorption of the plastics.  相似文献   

2.
Blending soy protein with polyesters using a polyvinyllactam as a compatibilizer successfully made soy protein-based plastics. The polyesters used to produce blends included polycaprolactone (PCL) and Biomax (a commercial biodegradable polyester). The blends were processed by compounding extrusion and injection molding. Blends containing soy protein/Biomax-poly(vinyl alcohol) had tensile strengths ranging from 16–22 MPa, with samples containing larger percentages of the synthetic polymer exhibiting greater strengths. Blends made from soy protein, Biomax, and PCL had tensile strengths ranging from 27–33 MPa. All the blends had high Young's moduli but demonstrated brittle characteristics as evident from their low elongations at break, ranging from 1.8–3.1%. Plastics made from soy protein/polyester blends exhibited low water absorption and had good stability under ambient conditions relative to the plastics made from soy protein alone. Blends made from soy protein flour produced plastics with the lowest water absorption.  相似文献   

3.
Corn starch and zein mixtures (4 : 1 dry weight) were extruded and injection-molded in the presence of plasticizers (glycerol and water). Tensile strength and percentage elongation of the molded plastics were measured before and after 1 week of storage under a dry or humid condition (11 or 93% RH). With 10–12% glycerol and 6–8% water, injection-molded plastics had relatively good tensile properties (20- to 25-MPa tensile strength and 3.5–4.7% elongation). But while exposed to dry conditions (11% RH), the molded plastics lost weight (0.5–1.5% in 7 days) and became very brittle, with significant decreases in tensile strength and elongation. Partial replacement (5–10%) of starch with a maltodextrin (average DE 5) reduced the glass transition and melting temperatures of the starch-zein mixture as well as the dry storage stability. Using potato starch instead of corn starch significantly improved the dry storage stability of the injection-molded starch-zein plastics (18- vs 11-MPa tensile strength). Anionic corn starches with a maleate or succinate group (DS<0.01) produced injection-molded plastics with improved tensile properties and storage stability. Plastics prepared from the starch maleate and zein mixture retained the strength during 1 week of dry storage without a significant change (26-MPa tensile strength and 3.7% elongation after 1 week of storage).Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Journal paper No. J-15561 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2863.  相似文献   

4.
Rapid growth of the biofuel industry is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. The objective of this research effort is to quantify the effects on mechanical properties of adding DDGS and glycerol to polylactic acid (PLA). The methodology was to physically mix DDGS, as filler, with PLA pellets and injection mold the blends into test bars using glycerol as a plasticizer. The bars were subject to mechanical testing procedures to obtain tensile strength, tensile and flexural moduli, elongation to break, and surface hardness of blends from 0 to 90?%, by weight, of plasticized filler. Blends were typically relatively brittle with little or no yielding prior to fracture, and the addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the PLA, and 20?C30?% filler reduced strength by 60?%. The 35?C50?% filled PLA had about one-fifth the value for pure PLA; at 60?C65?% filler level, about 10?% tensile strength remained; and over 80?% filler, 95?% of the strength was lost. Over 20?% filler, the tensile modulus decreased. The 35?% plasticized, filled blend yielded about one-half the stiffness as the pure PLA case; flexural modulus trended in the same manner but demonstrated a greater loss of stiffness. Most blends had less than 3?% elongation to break while surface hardness measurements indicated that up to 60?% filler reduced Shore D hardness by less than 20?%. The tensile strength and modulus data are consistent with the findings of other researchers and indicate that the type of filler and amount and sequence of plasticization are secondary effects, and the total PLA displaced is the dominant factor in determining the mechanical strength of the PLA and DDGS blends. Up to 65?% plasticized DDGS filler can be injection molded, and sufficient mechanical strength exists to create a variety of products. Such a novel material provides higher-value utilization of the biofuel coproducts of glycerol and DDGS and maintains the biodegradable and biocompatible nature of PLA.  相似文献   

5.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

6.
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

7.
以80目的废天然胶胶粉为研究对象,处理后将其分别以20%,30%的比例添加到天然混炼胶(NR)中,制备废胶粉/NR共混硫化胶;同时,通过邻苯二甲酸酐(PA)和高芳烃油对胶粉进行处理改性,制备了全胶粉弹性体。拉伸强度测试表明,对于共混胶弹性体,NR混炼胶空白样的拉伸强度为19.21 MPa,添加20%,30%比例的胶粉/NR共混硫化胶的拉伸强度可以分别达到18.03 MPa,17.23 MPa;改性后制备的全胶粉混炼胶硫化样品拉伸强度达到8.12 MPa,超过了再生胶的国标标准。同时应用扫描电子显微镜SEM分析、比较了各试样断裂面的微观结构,应用比表面仪BET和SEM表征了胶粉的表面形貌与结构,发现胶粉表面呈现"绒球"状,具有较好的表面性能。  相似文献   

8.
Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites   总被引:1,自引:0,他引:1  
Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but fiber must be well dispersed to achieve any benefit. The approach to dispersing fiber in this study was to use aqueous gels of sodium bentonite clay. These clay-fiber gels were combined with powdered compostable thermoplastics and calcium carbonate filler. The composite was dried, twin-screw extruded, and injection molded to make thin parts for tensile testing. An experimental design was used to determine the effect of fiber concentration, fiber length, and clay concentration. Polybutylene adipate/terephthalate copolymer (PBAT) and 70/30 polylactic acid (PLA)/PBAT blend were the biodegradable plastics studied. The composite strength decreased compared to the thermoplastics (13 vs. 19 MPa for PBAT, 27 vs. 38 MPa for the PLA/PBAT blend). The composite elongation to break decreased compared to the thermoplastics (170% vs. 831% for PBAT, 4.9% vs. 8.7% for the PLA/PBAT blend). The modulus increased for the composites compared to the thermoplastic standards (149 vs. 61 MPa for PBAT, 1328 vs. 965 MPa for the PLA/PBAT blend). All composite samples had good water resistance.  相似文献   

9.
Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

10.
Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.  相似文献   

11.
The structural and mechanical properties of extruded high-amylose and normal cornstarch were studied as a function of time and humidity to determine the suitability of high-amylose cornstarch for use in biodegradable plastic materials. After extrusion at 170°C and 20–30% moisture, high-amylose starch was mostly amorphous, with small amounts of V- and A-type crystal structures. Tensile strengths for the extruded high-amylose starch ribbons were rather stable with time (65, 50, and 35 MPa at 20, 50, and 80% RH) and were higher than those for normal cornstarch (25, 40, and 15 MPa after 84 days at 20, 50, and 80% RH). Elongations at break declined gradually with time for high-amylose starch (6, 11, and 11% after 84 days at 20, 50, and 80% RH), while rapid declines were seen for normal cornstarch at higher humidities (3, 9, and 3% after 84 days at 20, 50, and 80% RH). Differential scanning calorimetry revealed that normal cornstarch aged at a high humidity had much larger sub-T g endotherms than high-amylose cornstarch. These endotherms reflect decreases in enthalpy and free volume which occur in amorphous polymers due to structural relaxation. It appears, therefore, that plastic materials prepared from gelatinized or melted high-amylose cornstarch should have greater strength and flexibility and slower physical aging than those prepared from gelatinized normal cornstarch.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

12.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

13.
The use of synthetic and natural bioabsorbable plastics has been severely limited due to their low stiffness and strength properties as well as their strong tendency to absorb moisture. This research focused on the development of bioabsorbable polyphosphate filler/soy protein plastic composites with enhanced stiffness, strength, and water resistance. Bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter were homogenized and compression-molded. Physical, mechanical, and water absorption testing was performed on the molded specimens. Results showed improvements in stiffness, strength, and water resistance with increasing polyphosphate filler content up to 20% by weight. Application of a coupling agent produced further mechanical property enhancements and a dramatic improvement in water resistance, interpreted by an interfacial chemical bonding model. Examination of the fracture surfaces of the materials revealed that the addition of the polyphosphate fillers changed the failure mode from brittle to pseudo-ductile. These results suggest that these materials are suitable for many load-bearing applications in both humid and dry environments where current soy protein plastics are not usable.  相似文献   

14.
Properties of Starch/PVA Blend Films Containing Citric Acid as Additive   总被引:8,自引:0,他引:8  
Starch/polyvinyl alcohol (PVA) blend films were prepared successfully by using starch, polyvinyl alcohol (PVA), glycerol (GL) sorbitol (SO) and citric acid (CA) for the mixing process. The influence of mixing time, additional materials and drying temperature of films on the properties of the films was investigated. With increase in mixing time, the tensile strength (TS), elongation (%E), degree of swelling (DS) and solubility (S) of the film were equilibrated. The equilibrium for TS, %E, DS and S value was 20.12 MPa, 36.98%, 2.4 and 0.19, respectively. The mixing time of equilibrium was 50 min. TS, %E, DS and S of starch/PVA blend film were examined adding glycerol (GL), sorbitol (SO) and citric acid (CA) as additives. At all measurement results, except for DS, the film adding CA was better than GL or SO because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA and additives. Citric acid improves the properties of starch/PVA blend film compared to glycerol and sobitol. When the film was dried at low temperature, the properties of the films were clearly improved because the hydrogen bonding was activated at low temperature.  相似文献   

15.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

16.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

17.
Corn distillers’ dry grain, corncob powder, hardwood powder, and sugar beet pulp were separately anionized by oxidation with sodium hypochlorite in aqueous solution. Solid reaction products instantly precipitated upon admixing each of the above-oxidized materials with soy protein isolate. Infrared spectra and differential scanning calorimetry supported the hypothesis that soy protein isolate complexed with all of the above-oxidized polysaccharides. Reaction products with either oxidized corn distillers’ dry grain or oxidized sugar beet pulp provided hard, brittle pellets with tensile strengths as high as 9.5 MPa, suggesting that these materials could be viable as biodegradable plastics.  相似文献   

18.
Soy protein isolate (SPI) was modified using sodium dodecyl sulfate (SDS) and guanidine hydrochloride (GuHCl). Adhesion performance of the modified SPI on fiberboard was studied. The Water-soluble mass of the modified SPI adhesives was examined following modified ASTM D5570. The SDS-modified SPI containing 91% protein had a water-soluble mass of 1.7%. To be considered a water-resistant adhesive, the water-soluble mass of adhesive should be less than 2%. The wet shear strength test showed 100% cohesive failure within fiberboard, indicating that the modified SPI has good water resistance. The effect of drying treatment on adhesion performance of the SDS-modified SPI on fiberboard was then investigated. Drying treatment significantly affected the final adhesion performance. Shear strength did not change much, but the percentage of cohesive failure within fiberboard increased markedly as drying temperature increased. All the unsoaked, soaked, and wet specimens glued by the adhesives treated at 70° or 90°C had 100% cohesive failure within fiberboard. Viscosity also increased greatly with an increase in drying temperature. This information will be useful in developing low-cost adhesive processing system in the future.  相似文献   

19.
Green composites obtained from biodegradable renewable resources have gained much attention due to environmental problems resulting from conventionally synthetic plastics and a global increasing demand for alternatives to fossil resources. In this work we used different cellulose fibers from used office paper and newspaper as reinforcement for thermoplastic starch (TPS) in order to improve their poor mechanical, thermal and water resistance properties. These composites were prepared by using tapioca starch plasticized by glycerol (30 % wt/wt of glycerol to starch) as matrix reinforced by the extracted cellulose fibers with the contents ranging from 0 to 8 % (wt/wt of fibers to matrix). Properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetric analysis, water absorption measurements, scanning electron microscopy, and soil burial tests. The results showed that the introduction of either office paper or newspaper cellulose fibers caused the improvement of tensile strength and elastic modulus, thermal stability, and water resistance for composites when compared to the non-reinforced TPS. Scanning electron microscopy showed a good adhesion between matrix and fibers. Moreover, the composites biological degraded completely after 8 weeks but required a longer time compared to the non-reinforced TPS. The results indicated that these green composites could be utilized as commodity plastics being strong, inexpensive, plentiful and recyclable.  相似文献   

20.
Sugar beet pulp (SBP), the residue from sugar extraction, was compounded and turned into in situ thermoplastic composite materials. The compounding was performed using a common twin- screw compounding extruder and water and glycerol were used as co-plasticizers. The melt compounding of SBP utilized the water-soluble characteristics of pectin which is one of main components of SBP. The structure of SBP was destroyed under extrusion and pectin was partially released and plasticized by water and glycerol. Scanning electron microscopy revealed that the cellulose microfibrils were dispersed in the matrix of pectin and other ingredients. Effects of the water and glycerol co-plasticizers on rheological, tensile and dynamic mechanical properties of the SBP plastics were investigated. Effects of relative humidity of the environment on the tensile and dynamical mechanical properties of the neat SBP compounds were also evaluated. The results demonstrated that SBP could be processed as a plastic with water and glycerol as co-plasticizers using traditional processing equipments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号