首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Environmental Forensics》2002,3(3-4):263-278
The existing Nordtest methodology for oil spill Identification has over the past 10 years formed an important “platform” for solving oil spill identification cases both in the Scandinavian countries as well as other countries in Europe, the USA and Canada. “Revision of the Nordtest Methodology for Oil Spill Identification” is a cooperative project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute (Duxbury) in the USA. The goals of the project are: (1) to refine the existing Nordtest methodology into a technically more robust and defensible oil spill identification methodology with focus on determination of quantitative diagnostic indices (ratios) and (2) to adjust the revised Nordtest methodology into guidelines for the European Committee for Standardization (CEN). This paper presents the recommended methodology for the analytical oil spill identification part. The sampling techniques and handling of oil samples and background (reference) samples prior to their arrival at the environmental forensic laboratory is not covered in this paper. The recommended methodology approach is a result of documented analytical improvements and a more quantitative treatment of analytical data from gas chromatographic-flame ionization detector (GC/FID) and gas chromatographic-mass spectrometer methods (GC/MS-SIM) and the operational experiences over past few years among the participating forensic laboratories. The experience and literature in the field of oil exploration and production geochemistry have also played an important role for the recommended methodology. The results from a recent Round Robin test carried out among 12 laboratories using this new methodology are presented in a separate paper in this issue (8).  相似文献   

2.
《Environmental Forensics》2002,3(3-4):279-291
As part of the ongoing work to develop new guidelines for oil spill identification for the European Committee for Standardization (CEN), a Round Robin test was arranged by SINTEF in co-operation with the Norwegian General Standardizing Body (NAS). Twelve laboratories from ten countries participated in the Round Robin study. They include: Denmark, Finland, France, Germany, the Netherlands, Norway, Scotland, Sweden, Wales, and the U.S.A. The analytical methodology used for the Round Robin testing is a result of the ongoing project “Revision of the Nordtest Methodology for Oil Spill Identification”. The analytical methodology is described in the AMOP proceedings 2002. Seven oil samples (two artificially weathered “spill” samples and five possible sources) were analyzed following the recommended analytical protocols. The Round Robin study was a “difficult case”, because the two spill samples and three of the suspected sources were highly correlated to one another. These samples were from the same oil field in the North Sea, but from different production wells. The present paper summarizes the Round Robin study, and demonstrates the potential of this methodology as a strong technically defensible tool in oil spill identification due to its ability to distinguish qualitatively similar oils from a spill and any available candidate source.  相似文献   

3.
《Environmental Forensics》2013,14(3-4):279-291
As part of the ongoing work to develop new guidelines for oil spill identification for the European Committee for Standardization (CEN), a Round Robin test was arranged by SINTEF in co-operation with the Norwegian General Standardizing Body (NAS). Twelve laboratories from ten countries participated in the Round Robin study. They include: Denmark, Finland, France, Germany, the Netherlands, Norway, Scotland, Sweden, Wales, and the U.S.A. The analytical methodology used for the Round Robin testing is a result of the ongoing project "Revision of the Nordtest Methodology for Oil Spill Identification". The analytical methodology is described in the AMOP proceedings 2002. Seven oil samples (two artificially weathered "spill" samples and five possible sources) were analyzed following the recommended analytical protocols. The Round Robin study was a "difficult case", because the two spill samples and three of the suspected sources were highly correlated to one another. These samples were from the same oil field in the North Sea, but from different production wells. The present paper summarizes the Round Robin study, and demonstrates the potential of this methodology as a strong technically defensible tool in oil spill identification due to its ability to distinguish qualitatively similar oils from a spill and any available candidate source.  相似文献   

4.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative "fingerprinting" analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the "prime suspects" for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

5.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative “fingerprinting” analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the “prime suspects” for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

6.
Oil spills occur commonly, and chemical compounds originating from oil spills are widespread in the aquatic environment. In order to monitor effects of a bunker oil spill on the aquatic environment, biomarker responses were measured in eelpout (Zoarces viviparus) sampled along a gradient in Göteborg harbor where the oil spill occurred and at a reference site, 2 weeks after the oil spill. Eelpout were also exposed to the bunker oil in a laboratory study to validate field data. The results show that eelpout from the Göteborg harbor are influenced by contaminants, especially polycyclic aromatic hydrocarbons (PAHs), also during “normal” conditions. The bunker oil spill strongly enhanced the biomarker responses. Results show elevated ethoxyresorufin-O-deethylase (EROD) activities in all exposed sites, but, closest to the oil spill, the EROD activity was partly inhibited, possibly by PAHs. Elevated DNA adduct levels were also observed after the bunker oil spill. Chemical analyses of bile revealed high concentrations of PAH metabolites in the eelpout exposed to the oil, and the same PAH metabolite profile was evident both in eelpout sampled in the harbor and in the eelpout exposed to the bunker oil in the laboratory study.  相似文献   

7.
《Environmental Forensics》2013,14(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds--benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

8.
An oil spill occurred off Goa, west coast of India, on 23 March 2005 due to collision of two vessels. In general, fair weather with weak winds prevails along the west coast of India during March. In that case, the spill would have moved slowly and reached the coast. However, in 2005 when this event occurred, relatively stronger winds prevailed, and these winds forced the spill to move away from the coast. The spill trajectory was dominated by winds rather than currents. The MIKE21 Spill Analysis model was used to simulate the spill trajectory. The observed spill trajectory and the slick area were in agreement with the model simulations. The present study illustrates the importance of having pre-validated trajectories of spill scenarios for selecting eco-sensitive regions for preparedness and planning suitable response strategies whenever spill episodes occur.  相似文献   

9.
《Environmental Forensics》2002,3(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds—benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

10.
This study represents a forensic chemical analysis to define the liability for the coastal bitumens polluting the beaches of the Mediterranean city of Alexandria. Six tar balls collected from several locations along the coast of the city were analyzed for their acyclic and polycyclic hydrocarbons as well as sulfur heterocycles using GC/FID, GC/AED and gas chromatography/mass spectrometry techniques. The analysis of one Egyptian crude oil is also included as a possible source oil. The tar ball samples were at early stages of weathering. Based on the GC traces and biomarker signatures, the tar balls could be genetically different. One sample collected from the Eastern Harbor region appears to be a Bunker C type fuel produced from Egyptian crudes. The refining process has removed the low molecular weight components. On the other hand, the wide n-alkane distribution together with the absence of an unresolved complex mixture suggests that crude oils probably from tank washings, ballast discharges or accident spills from tankers could have contributed significantly to the other tar ball samples. The distribution of source specific hopane and sterane markers revealed that the tar samples probably originate from different oil fields.  相似文献   

11.
不同类型海岸的溢油清理方法   总被引:1,自引:0,他引:1  
世界石油资源分布和需求的不均衡性,促进了海上石油工业和石油运输业的快速发展,同时也增加了溢油事故的几率.海上溢油污染问题日趋严重,溢油污染对海洋环境、生态、资源、经济及人类生产生活等造成了巨大的影响,日益引起社会各界的关注.海岸溢油污染清理实践表明,正确的溢油清理方案的制定应综合考虑海岸的敏感性指数、溢油的类型、清理方法可能带来的危害以及支际可操作程度等.对包括盐沼地海岸和红树林海岸,沉积海岸,以及岩石海岸三类典型海岸的国内外现有海岸溢油污染清理技术进行了详细的综述,以期为我国的海岸带管理和溢油应急计划的制订提供技术参考.  相似文献   

12.
The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters.

Implications: Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.  相似文献   


13.
The International Atomic Energy Agency (IAEA) has been systematically supporting work on biomonitoring air pollution using plants since 1997. Such studies are presently being supported by the IAEA in 14 countries within a co-ordinated research project. The main emphasis of this project is on (1) identification of suitable biomonitors of atmospheric pollution for local and/or regional application, and (2) their validation for general environmental monitoring, whenever possible. Although the participants are using different plants as biomonitors in their research in geographically and climatically diverse parts of the world, they are harmonising sampling approaches and analytical procedures. In this paper, an overview of these activities is given, along with the details, where possible. In all of these activities, proficiency testing and analytical quality assurance are important issues, which merit special attention. Within the scope of an intercomparison exercise, two lichen materials were distributed among the participating laboratories and a proficiency test was organised. The results obtained proved satisfactory performance for most participating laboratories.  相似文献   

14.
The benthic macroinvertebrate fauna of Asher Creek, a 4th order stream with a base flow of 0.03 m(3)/s, was monitored on 11 occasions for 532 days following a 1.5 million liter domestic crude oil spill. Aquatic insects, crustaceans, segmented worms, roundworms, flatworms, snails, freshwater mussels and other benthic organisms in the oil impacted area were reduced to less than 0.1% of expected numbers at the first sampling period 25 days after the spill. Species diversity indices and the number of mayfly and stonefly taxa were less than the minimum values established for unpolluted Missouri streams for 11 months. The initial post-spill community was dominated by Chironomidae (midges), Simuliidae (blackflies) and Oligochaeta (segmented worms). Some species of Plecoptera (stoneflies), Ephemeroptera (mayflies) and Trichoptera (caddisflies) were absent from the fauna for as long as 9 months. The functional feeding groups of scrapers, filterers, gatherers, and predators initially decreased in relative abundance. Predators later increased in response to a rapidly expanding prey base. Shredders did not change in relative abundance throughout the recovery period. Oil was visually present in the stream riffle substrate for 453 days following the spill. Dissolved oxygen, pH and conductivity were not affected. The visible appearance of oil in the stream substrate was a simple predictor of the status of the benthic invertebrate community. Areas protected with surface skimming siphon dams were less severely impacted and recovered more rapidly than areas where the stream substrate was inundated with oil. The most apparent factors controlling the recovery were the total volume of water passing through the contaminated area and the occurrence of scouring flood.  相似文献   

15.
The massive oil discharge in the Saudi Arabian coast at the end of the 1991 Gulf War is used here as a natural experiment to study the ability of microbial mats to transform oil residues after major spills. The degree of oil transformation has been evaluated from the analysis of the aliphatic and aromatic hydrocarbons by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The oil-polluted microbial mat samples from coastal environments exhibited an intermediate degree of transformation between that observed in superficial and deep sediments. Evaporation, photo-oxidation and water-washing seemed to lead to more effective and rapid elimination of hydrocarbons than cyanobacteria and its associated microorganisms. Furthermore, comparison of some compounds (e.g. regular isoprenoid hydrocarbons or alkylnaphthalenes) in the oil collected in the area after the spill or in the mixtures retained by cyanobacterial growth gave rise to an apparent effect of hydrocarbon preservation in the microbial mat ecosystems.  相似文献   

16.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol: water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

17.
Biomarkers and low-molecular weight polyaromatic compounds have been extensively studied for their fate in the environment. They are used for oil spill source identification and monitoring of weathering and degradation processes. However, in some cases, the absence or presence of very low concentration of such components restricts the access of information to spill source. Here we followed the resistance of high-molecular weight sulfur-containing aromatics to the simulated weathering condition of North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The sulfur aromatics in North Sea crude having double bond equivalents (DBE) from 6 to 14 with a mass range 188-674 Da were less influenced even after 6 months artificial weathering. Moreover, the ratio of dibenzothiophenes (DBE 9)/naphthenodibenzothiophenes (DBE 10) was 1.30 and 1.36 in crude oil and 6 months weathered sample, respectively reflecting its weathering stability. It also showed some differences within other oils. Hence, this ratio can be used as a marker of the studied crude and accordingly may be applied for spilled oil source identification in such instances where the light components have already been lost due to environmental influences.  相似文献   

18.
The expected increase in offshore oil exploration and production in the Arctic may lead to crude oil spills along arctic shorelines. To evaluate the potential effectiveness of bioremediation to treat such spills, oil spill bioremediation in arctic sediments was simulated in laboratory microcosms containing beach sediments from Barrow (Alaska), spiked with North Slope Crude, and incubated at varying temperatures and salinities. Biodegradation was measured via respiration rates (CO2 production); volatilization was quantified by gas chromatography/mass spectrophotometry (GC/MS) analysis of hydrocarbons sorbed to activated carbon, and hydrocarbons remaining in the sediment were quantified by GC/flame ionization detector (FID). Higher temperature leads to increased biodegradation by naturally occurring microorganisms, while the release of volatile organic compounds was similar at both temperatures. Increased salinity had a small positive impact on crude oil removal. At higher crude oil dosages, volatilization increased, however CO2 production did not. While only a small percentage of crude oil was completely biodegraded, a larger percentage was volatilized within 6–9 weeks.  相似文献   

19.
Development of efficient techniques to combat the harmful effects of oil spill is an emerging field, where fabrication of new sorbents for selective removal of oil has become a hot topic for environmental scientists. The present study reports the preparation of superhydrophobic/oleophilic magnetic titania nanotubes via a facile hydrothermal method, followed by the treatment with octadecylamine, as potential magnetically driven sorbent for selective removal of oil from water surface. The magnetic nature (superparamagnetism at 300 K) of the nanotubes enabled magnetic removal of the oil-sorbed material from water surface. Wettability test of the material depicted a static water contact angle of 166 ± 1°, indicating its superhydrophobic character. Oil uptake experiments and contact angle measurements revealed its superoleophilicity with maximum oil sorption capacity >1.5 g/g for a variety of oils. In addition to the ease of magnetic removal, the nanotubes possess sufficient buoyancy, high selectivity, and quick rate of oil uptake and is more than five times reusable.  相似文献   

20.
A laboratory intercomparison study was carried out to determine the current capability of Canadian laboratories for the analysis of dioxins and furans in ambient air. Seven laboratories (government and private) participated in the analysis of exposed foam/filter samples, ambient air extracts and standard mixtures. The results indicated that a number of laboratories were capable of the aforementioned analyses; however, further analytical methodology development is also required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号