首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.  相似文献   

2.
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity.  相似文献   

3.
Elevated nitrate concentrations within a municipal water supply aquifer led to pilot testing of a field-scale, in situ denitrification technology based on carbon substrate injections. In advance of the pilot test, detailed characterization of the site was undertaken. The aquifer consisted of complex, discontinuous and interstratified silt, sand and gravel units, similar to other well studied aquifers of glaciofluvial origin, 15-40 m deep. Laboratory and field tests, including a conservative tracer test, a pumping test, a borehole flowmeter test, grain-size analysis of drill cuttings and core material, and permeameter testing performed on core samples, were performed on the most productive depth range (27-40 m), and the results were compared. The velocity profiles derived from the tracer tests served as the basis for comparison with other methods. The spatial variation in K, based on grain-size analysis, using the Hazen method, were poorly correlated with the breakthrough data. Trends in relative hydraulic conductivity (K/K(avg)) from permeameter testing compared somewhat better. However, the trends in transient drawdown with depth, measured in multilevel sampling points, corresponded particularly well with those of solute mass flux. Estimates of absolute K, based on standard pumping test analysis of the multilevel drawdown data, were inversely correlated with the tracer test data. The inverse nature of the correlation was attributed to assumptions in the transient drawdown packages that were inconsistent with the variable diffusivities encountered at the scale of the measurements. Collectively, the data showed that despite a relatively low variability in K within the aquifer under study (within a factor of 3), water and solute mass fluxes were concentrated in discrete intervals that could be targeted for later bioremediation.  相似文献   

4.
Groundwater contamination by nitrate was investigated in an agricultural area in southern Quebec, Canada, where a municipal well is the local source of drinking water. A network of 38 piezometers was installed within the capture zone of the municipal well to monitor water table levels and nitrate concentrations in the aquifer. Nitrate concentrations were also measured in the municipal well. A Water flow and Nitrate transport Global Model (WNGM) was developed to simulate the impact of agricultural activities on nitrate concentrations in both the aquifer and municipal well. The WNGM first uses the Agriflux model to simulate vertical water and nitrate fluxes below the root zone for each of the seventy agricultural fields located within the capture zone of the municipal well. The WNGM then uses the HydroGeoSphere model to simulate three-dimensional variably-saturated groundwater flow and nitrate transport in the aquifer using water and nitrate fluxes computed with the Agriflux model as the top boundary conditions. The WNGM model was calibrated by reproducing water levels measured from 2005 to 2007 in the network of piezometers and nitrate concentrations measured in the municipal well from 1997 to 2007. The nitrate concentrations measured in the network of piezometers, however, showed greater variability than in the municipal well and could not be reproduced by the calibrated model. After calibration, the model was validated by successfully reproducing the decrease of nitrate concentrations observed in the municipal well in 2006 and 2007. Although it cannot predict nitrate concentrations in individual piezometers, the calibrated and validated WNGM can be used to assess the impact of changes in agricultural practices on global nitrate concentrations in the aquifer and in the municipal well.  相似文献   

5.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

6.
In situ sequenced bioremediation of mixed contaminants in groundwater   总被引:3,自引:0,他引:3  
A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.  相似文献   

7.
One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.  相似文献   

8.
Accumulation of nitrite in denitrifying barriers when phosphate is limiting   总被引:2,自引:0,他引:2  
Permeable in situ denitrifying barriers can remove nitrate from groundwater. Barriers may be constructed by filling an excavated area with a porous mixture of sand, fine gravel, and substrate or by the injection of a nonaqueous phase substrate into an aquifer. The substrate stimulates the development of a denitrifying microbial community by providing an electron donor. The objective of this study was to determine the ability of denitrifying barriers to function under low-phosphate conditions. Sand columns injected with a soybean oil emulsion were used as laboratory models of denitrifying barriers. When a natural groundwater containing 17 mg l(-1) nitrate-N and 0.009 mg l(-1) phosphate-P was pumped through the columns, only a small amount of nitrate was removed from the water and, in some effluent fractions, 52% to 88% of the influent nitrate had converted to nitrite. Nitrite also accumulated when the phosphate concentration of the groundwater was increased to 0.040 or 0.080 mg l(-1) phosphate-P. Only when a 0.160 mg l(-1) phosphate-P supplement was added to the groundwater was there a loss of nitrate without a large accumulation of nitrite. The addition of solid calcium phosphate or rock phosphate to the sand columns was found to provide adequate phosphate for denitrification in short-term studies. These studies point out the need to ensure that adequate phosphate is present in denitrifying barriers especially when such barriers are used beneath phosphate-binding soils.  相似文献   

9.
Nitrate in drinking water is a hazard to both humans and animals. Contaminated water can cause methemoglobinemia and may pose a cancer risk. Permeable barriers containing innocuous oils, which stimulate denitrification, can remove nitrate from flowing groundwater. For this study, a sand tank (1.1 x 2.0 x 0.085 m in size) containing sand was used as a one-dimensional open-top scale model of an aquifer. A meter-long area near the center of the tank contained sand coated with soybean oil. This region served as a permeable denitrifying barrier. Water containing 20 mg l(-1) nitrate-N was pumped through the barrier at a high flow rate, 1112 l week(-1), for 30 weeks. During the 30-week study, the barrier removed 39% of the total nitrate-N present in the water. The barrier was most efficient during the first 10 weeks of the study when almost all of the nitrate and nitrogen was removed. Efficiency declined with time so that by week 30 almost no nitrate was removed by the system. Nitrite levels in the effluent water remained low throughout the study. Barriers could be used to protect groundwater from nitrate contamination or for the in situ treatment of contaminated water. At the low flow rates that exist in most aquifers, such barriers should be effective at removing nitrate from groundwater for a much longer period of time.  相似文献   

10.
The aim of the present work was to determine the denitrification potential of aerobic granular sludge for concentrated nitrate wastes. We cultivated mixed microbial granules in a sequencing batch reactor operated at a superficial air velocity of 0.8 cm s−1. The denitrification experiments were performed under anoxic conditions using serum bottles containing synthetic media with 225-2250 mg L−1 NO3-N. Time required for complete denitrification varied with the initial nitrate concentration and acetate to nitrate-N mass ratio. Complete denitrification of 2250 mg L−1 NO3-N under anoxic conditions was accomplished in 120 h. Nitrite accumulation was not significant (<5 mg N L−1) at initial NO3-N concentrations below 677 mg L−1. However, denitrification of higher concentrations of nitrate (?900 mg N L−1) resulted in buildup of nitrite. Nevertheless, nitrite buildups observed in present study were relatively lower compared to that reported in previous studies using flocculent activated sludge. The experimental results suggest that acetate-fed aerobic granular sludge can be quickly adapted to treat high strength nitrate waste and can thus be used as seed biomass for developing high-rate bioreactors for efficient treatment of concentrated nitrate-bearing wastes.  相似文献   

11.
Nair RR  Dhamole PB  Lele SS  D'Souza SF 《Chemosphere》2007,67(8):1612-1617
Denitrification of synthetic high nitrate waste containing 9032 ppm NO(3)-N (40,000 ppm NO(3)) in a time period of only 6h has been achieved in our previous study using activated sludge. The activated sludge culture was acclimatized by a stepwise increase in the nitrate concentration of synthetic waste. In the present work, studies were carried out on the changing microbial population of the sludge and the physiology of nitrate metabolism during the various stages of adaptation process to high strength synthetic nitrate waste. During the course of adaptation, with an increase in the nitrate concentration, a sharp increase in the number of denitrifiers was found with an equally rapid decrease in the nitrifying community. Two key enzymes involved in the first two steps of the denitrification process were also studied during this period. The results of the study suggest that specific enzyme levels increase as the activated sludge adapts itself to higher nitrate concentrations. Biological denitrification of high nitrate waste is a slow process and to increase the rate of denitrification, parameters such as pH, temperature, C:N and biomass concentration of the process were optimized using orthogonal array method. Optimized conditions increased the specific nitrate reduction rate by 54% and specific nitrite reduction rate by 45%.  相似文献   

12.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

13.
Zhu JG  Liu G  Han Y  Zhang YL  Xing GX 《Chemosphere》2003,50(6):725-732
Nitrate concentration in well water collected from the wells near farm houses was investigated in the Taihu Lake basin (TBL) of China. Nitrate-N content of the well water ranged from 0.1 to 23 mgNl(-1), and 41% exceeded the criteria (10 mg Nl(-1)). It was found that the difference in well conditions, especially the depth of the well, was the main cause of the difference in the nitrate concentration of well water, i.e. it was higher in shallow well and lower in deeper well. A recommendation was made for local farmers to drill wells deeper than 10 m in order to reduce the risk of high ingestion of nitrate-N in their drinking water. Nitrate distribution and denitrification in the saturated zone of a paddy field under rice/wheat rotation in the TBL were studied. Porous pipes were installed in triplicate at depths of 1.5, 2.0, 2.5, 3.5 and 5 m respectively to collect the soil solution samples. Results showed that nitrate was the predominant N form in soil solution of saturated zone, and it increased from 1.5 to 2.5 m depth, and decreased from 2.5 to 5 m depth. N2O captured in the soil solution was very high comparing with N2O content in air. N2O content was positively correlated with nitrate concentrations in the soil profile. These results indicate that nitrate leached into saturated zone was mainly transformed via denitrification processes. Comparing the sum of inorganic nitrogen with the total nitrogen in soil solution samples collected from those wells at the field, some soluble organic nitrogen was found about 1-2 mg N l(-1) in average.  相似文献   

14.
The aquifer beneath an abandoned refinery in the Lower Rhine area, Germany, was contaminated with a number of different mineral oil products. Groundwater sampling in the area around the former xylene plant revealed that a xylene plume had developed in the underlying groundwater, and moreover, that there is strong evidence for in situ microbial xylene degradation with oxygen, nitrate, sulfate and ferric iron as electron acceptors. In order to prevent further xylene spreading, three pumping wells extracting contaminated water were installed downgradient of the spill zone. The numerical reactive transport code Transport Biochemisty Chemistry (TBC) was applied to this situation to quantify the relation of microbial degradation to xylene removal by the pumping wells. It could be shown that the unamended in situ degradation was an appreciable xylene removal process that contributed to about one-third to the total xylene removal (degradation plus extraction). A further objective of the model application was to predict xylene spreading under regional flow conditions, i.e. without operation of the three pumping wells, to consider the possible effects of natural xylene attenuation. To accomplish this, the model calibrated for the situation with operating wells was transferred to the hydraulic situation of regional flow while retaining the parameters of the biochemical model. It turned out that the xylene plume that is expected to develop downgradient of the source area will be limited to an extension of not more than 1000 m. An interesting feature of the simulations results was that xylene degradation under iron-reducing conditions, which was of minor importance for the situation with operating pumping wells, becomes the dominant degradation mechanism under regional flow conditions. Moreover, iron reduction will be the key process in controlling plume evolution. The model application illustrates that multi-species reactive transport models are needed to adequately transfer reactive processes from one hydraulic situation to another, while single species models are not suited for this predictive task.  相似文献   

15.
An area where a free-product accumulation of trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) occurs at the bottom of a 10-m-thick surficial sand aquifer was studied to determine the integrity of the underlying, 20-m-thick, clayey silt aquitard formed of glaciolacustrine sediment. TCE concentration-versus-depth profiles determined from aquitard cores collected at five locations indicated penetration of detectable TCE 2.5 to 3.0 m into the aquitard. Two of the profiles show persistent DNAPL at the aquitard interface, while two others indicate that DNAPL, present initially, was completely dissolved away producing concentration declines at the aquitard interface. The fifth profile suggests shallow DNAPL penetration (<0.5 m) into the aquitard, however, this penetration, which was likely caused by cross-contamination during core collection or cone penetrometry (CPT) of the aquitard interface, did not increase the maximum depth of TCE penetration. Combining the field profiles with one-dimensional model simulations, downward migration of the aqueous TCE front, defined as the EPA MCL of 5 microg/l, which was below the analytical detection limit, was projected to a distance between 4 and 5 m below the top of the aquitard. Using a single set of estimated aquitard parameter values, simulations of aqueous TCE migration into the aquitard provided a good fit to four of the field profiles with a migration time of 35 to 45 years, consistent with the history of TCE use at the site. These simulations indicate aqueous TCE migration is diffusion-dominated with only small advective influence by the downward groundwater velocity of 2 to 3 cm/year or less in the aquitard due to pumping of the underlying aquifer to supply water to the facility in the past 50 years. The applicability of the parameter values was confirmed by in situ diffusion experiments of 1-year duration, in which stainless steel cylinders containing DNAPL were inserted into the aquitard. The diffusion-dominated nature of the profiles indicates that the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells, concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after the breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells , concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard.  相似文献   

16.
Moon HS  Shin do Y  Nam K  Kim JY 《Chemosphere》2008,73(5):723-728
The long-term performance of a sulfur-based reactive barrier system was evaluated using autotrophic denitrification in a large-scale column. A bacterial consortium, containing autotrophic denitrifiers attached on sulfur particles, serving as an electron donor, was able to transform 60mgNL(-1) of nitrate into dinitrogen. In the absence of phosphate, the consortium was unable to remove nitrate, but after the addition of phosphate, nitrate removal was readily evident. Once the column operation had stabilized, seepage velocities of 1.0x10(-3) and 0.5x10(-3)cms(-1), corresponding to hydraulic residence times of 24 and 48h, respectively, did not affect the nitrate removal efficiency, as determined by the nitrate concentration in the effluent. However, data on the nitrate, nitrite and sulfate distribution along the column indicated differential transformation patterns with column depths. Based on the dinitrogen concentration in the total gas collected, the denitrification efficiency of the tested column was estimated to be more than 95%. After 500d operation, the hydrodynamic characteristics of the column slightly changed, but these changes did not inhibit the nitrate removal efficiency. Data from a bacterial community analysis obtained from four parts of the column demonstrated the selective a spatial distribution of predominant species depending on available electron acceptors or donors.  相似文献   

17.
A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.  相似文献   

18.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

19.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

20.
In the hydroblasting of ships' boiler tubes, a wastewater high in nitrite (as high as 1200 mg litre(-1)) is produced by the US Navy. This research has evaluated the use of a suspended-growth biological system to treat this wastewater by denitrification. Two biological treatment configurations were evaluated (direct denitrification versus nitrification/denitrification) with nitrification/denitrification producing better nitrite removal efficiencies (54 to 62% versus 40%, respectively). The introduction of metals (cadmium, chromium, lead, copper and iron) in concentrations typical for this wastewater did not inhibit the nitrite removal efficiencies. The influent metal concentrations ranged from 0.02 mg litre(-1) for cadmium to 22 mg litre(-1) for iron and the metal removal efficiencies ranged from 4.8% for cadmium to 50% for copper. Increasing sludge age resulted in improved nitrite removal efficiencies (52%, 57% and 74% for sludge ages of 4, 6 and 8 days, respectively). The resulting biokinetic constants were similar to those reported by others for lower influent concentrations of nitrite or nitrate (Ygs=0.02 mg/mg; Ygn=0.16 mg/mg; Yb=0.8 mg/mg; and b=0.006 h(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号