首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Constructing various green wetland examples for mangrove wetland systems is a useful way to use natural power to remediate the polluted wetlands at intertidal zones. Metallothioneins (MT) are involved in heavy metal tolerance, homeostasis, and detoxification of intracellular metal ions in plants. In order to understand the mechanism of heavy metal uptake in Aegiceras corniculatum, we isolated its metallothionein gene and studied the MT gene expression in response to heavy metals contamination. Here, we report the isolation and characterization of MT2 genes from young stem tissues of A. corniculatum growing in the cadmium (Cd) and lead (Pb) polluted wetlands of Quanzhou Bay, southeast of China. The obtained cDNA sequence of MT is 512 bp in length, and it has an open reading frame encoding 79 amino acid residues with a molecular weight of 7.92 kDa and the theoretical isoelectric point of 4.55. The amino acids include 14 cysteine residues and 14 glycine residues. It is a non-transmembrane hydrophilic protein. Sequence and homology analysis showed the MT protein sequence shared more than 60 % homology with other plant type 2 MT-like protein genes. The results suggested that the expression level of MT gene of A. corniculatum young stems induced by a certain range concentration of Cd2+ and Pb2+ stresses (0.2 mmol L?1 Pb2+, 1 mmol L?1 Pb2+, 0.2 mmol L?1 Pb2+, and 40 μmmol L?1 Cd2+; 1 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+) compared with control might show an adaptive protection. The expression levels of MT gene at 20 h stress treatment were higher than those at 480 h stress treatment. The expression levels of MT gene with 0.2 mmol L?1 Pb2+ stress treatment were higher than those with 0.2 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+ stress treatment, and the MT gene expression levels with 1 mmol L?1 Pb2+ treatment were higher than those with 1 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+ treatment. There exists an antagonistic action between Pb2+ and Cd2+ in the MT metabolization of A. corniculatum.  相似文献   

2.
This paper highlights the levels of anions (nitrate, nitrite, sulfate, bromide, chloride, and fluoride) and cations (potassium, sodium, magnesium, and calcium) in selected springs and groundwater sources in the urban-west region of Zanzibar Island. The levels of total dissolved solids (TDS) and sodium adsorption ratio (SAR) were also studied. Thirty water samples were collected in December 2012 from various types of water sources, which included closed hand-dug wells (CHDW), open hand-dug wells (OHDW), springwater (SW), public bore wells (PBW), and bore wells owned by private individuals (BWP), and analyzed after filtration and sometimes dilution. The cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The anions were analyzed by chemically suppressed ion chromatography (IC). The ranges of the levels of the investigated parameters were as follows: Na 13.68–3,656 mg L?1, K 2.66–583 mg L?1, Mg 0.63–131.10 mg L?1, Ca 16.79–189.9 mg L?1, Cl? 8.61–4,340.97 mg L?1, F? 0–1.02 mg L?1, Br? 0–10.88 mg L?1, NO3 ? 0.18–342.4 mg L?1, NO2 ? 0–1.39, SO4 2? 4.43–534.02 mg L?1, TDS 7–6,380 mg L?1, and SAR 0.63–50. Except fluoride, most of the studied parameters in the water samples had concentrations beyond the permissible limits of the World Health Organization (WHO). The elevated concentrations are a result of seepage of contaminated water from on-site septic tanks, pit latrines, landfill leachates, fertilizer applications, and domestic effluents. These results should alert domestic water stakeholders in Zanzibar to the urgent task of initiating a quick mitigation response to control these alarming water risks.  相似文献   

3.
The aquatic systems responsible for water supply in the Brazilian Federal District (FD) have been threatened by anthropogenic pressures, especially considering the expressive demographic increase in the region during the last decades. The purposes of this research were: (a) to assess the water quality in streams located in the FD by monitoring physical–chemical variables; (b) to define baselines for these variables among different ecological status categories. The 14 investigated streams were sampled between 2006 and 2009, in the dry (August–September, 2006, 2008, 2009) and rainy (March–April, 2008, 2009) seasons. All sampling sites were classified in four categories (“very impacted”, “impacted”, “in transition” and “natural”) using an adaptation of a rapid habitat assessment protocol. Differences in water quality among sites were generally well predicted in the four ecological status categories defined by the protocol, which showed a gradient in nutrient concentrations from reference sites classified as “natural” (medians: electrical conductivity?=?7.3 μS cm?1; nitrate?=?0.040 mg L?1; ammonium?=?0.039 mg L?1; soluble reactive phosphorus (SRP)?=?<0.001 mg L?1; total phosphorus (TP)?=?0.006 mg L?1; ) to those classified as “very impacted” (medians: electrical conductivity?=?87.7 μS cm?1; nitrate?=?0.247 mg L?1; ammonium?=?0.219 mg L?1; SRP?=?0.010 mg L?1; TP?=?0.035 mg L?1). Point sources inputs were the main factor for water quality deterioration. The nutrient baselines reported were relatively low when compared to data collected from reference areas in Brazil (e.g., São Paulo State) or temperate regions, especially for TP.  相似文献   

4.
The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box–Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L?1, cactus dosage 2.60 mg L?1, and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L?1, cactus dosage 160 mg L?1, and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.  相似文献   

5.
The effective determination of heavy metals from environmental media is among the most important issues for many industrialized countries. The interaction between RS-N, as novel heavy metal probe, and metal ions was studied. RS-N shows selective color change from colorless to pink in the presence of Hg2+ in methanol/water solvent and the UV–Vis study shows peak at 560 nm. Fluorescence data revealed that the fluorescence enhance of RS-N by Hg2+ dramatically was the result of the formation of [Hg2+]RS-N complex. The effective association constants (K a ) were 3.97?×?105 and 0.204?×?105 M?1 for Hg2+ and Cu2+ to RS-N, respectively. The thermodynamic parameters, enthalpy change (ΔH 0) and entropy change (ΔS 0), were calculated to be ?6.431?±?0.226 kJ/mol and ?0.129?±?0.008 J/K/mol, respectively, according to van’t Hoff equation on the basis of Gibbs free energy (ΔG 0) ranged from ?33.8326 to ?28.5389 kJ/mol.  相似文献   

6.
The ability of cadmium uptake by metal-resistant yeast, Candida tropicalis, from the liquid medium and wastewater was evaluated. The minimum inhibitory concentration of Cd2?+? against C. tropicalis was 2,500 mg L???1. The yeast also showed tolerance toward Zn2?+? (1,400 mg L???1), Ni2?+? (1,000 mg L???1), Hg2?+? (1,400 mg L???1), Cu2?+? (1,000 mg L???1), Cr6?+? (1,200 mg L???1), and Pb2?+? (1,000 mg L???1). The yeast isolate showed typical growth curves, but lag and log phases extended in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 8. The metal processing ability of the isolate was determined in a medium containing 100 mg L???1 of Cd2?+?. C. tropicalis could decline Cd2?+? 70%, 85%, and 92% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2?+? 40% and 78% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and nonprotein thiol levels by 135% and 134% at 100-mg L???1 concentration, respectively. An increase in the synthesis of GSH is involved in metal tolerance, and the presence of increasing GSH concentrations may be a marker for high metal stress in C. tropicalis. C. tropicalis, which is resistant to heavy metal ions and is adaptable to the local environmental conditions, may be employed for metal detoxification operations.  相似文献   

7.
In an effort to determine vehicular impact on soil quality, soil samples were collected from three different zones (Pahalgam, Batakote, and Chandanwari) in Pahalgam forest ecosystem. Results showed that a significant decrease in moisture content, organic carbon, available nitrogen, and potassium was observed in nearby road side soils. However, pH was observed to be on neutral side and available phosphorus recorded high concentration. The concentration of heavy metals Pb2+, Cu2+, Zn2+, Ni2+, and Cd2+ estimated was also significantly high. Furthermore, concentration of Pb2+ at high vehicular load subzones was observed to be highest (1.168 mg/Kg) followed by Zn2+ (0.896 mg/Kg), Ni2+ (0.649 mg/Kg), Cu2+ (0.415 mg/Kg), and Cd2+ (0.079 mg/Kg). An inter-zone analysis revealed that the concentration of the heavy metals (Pb2+?>?Ni2+?>?Cd2+) was observed to follow the trend, Z-I?>?Z-II?>?Z-III. Variation along the temporal gradient and the impact on soil qualities were notably higher in summer. Vehicular pollution to a great extent impacts physico-chemical characteristics and more interestingly adds substantial concentration of heavy metals in soils.  相似文献   

8.
Arsenic is a widespread contaminant in the environment. The intake of water containing high concentrations of arsenic could have serious impact on human health, such as skin and lung cancer. In the European Union, thus, also in Italy, the arsenic limit in drinking water is 10 μg L?1. Several water remediation treatment technologies are available for arsenic removal. For some processes, the removal efficiencies can be improved after an oxidation step. Most full-scale applications are based on conventional oxidation processes for chemical micropollutant removal. However, if water contains arsenic and refractory organic contaminants, the advanced oxidation processes could be considered. The aim of this work was to investigate the effectiveness of ultraviolet (UV) radiation alone and in combination with hydrogen peroxide for the oxidation of arsenic and terbuthylazine (TBA). The experimental tests were performed in groundwater at the laboratory scale (0.1 mg L?1 As(III) and 10 μg L?1 TBA). Hydrogen peroxide alone (15 mg L?1) was ineffective on both arsenic and TBA oxidation; the 253.7-nm radiation alone did not oxidize arsenic(III), but photolyzed efficiently TBA (52 % removal yield at a UV dose of 1,200 mJ cm?2). The UV/H2O2 advanced oxidation (UV dose 600–2,000 mJ cm?2, 5–15 mg L?1 H2O2) was the most effective process for the oxidation of both arsenic and TBA, with observed oxidation efficiencies of 85 and 94 %, respectively, with 5 mg L?1 H2O2 and a UV dose of 2,000 mJ cm?2.  相似文献   

9.
Top predators like the Neotropical otter, Lontra longicaudis annectens, are usually considered good bioindicators of habitat quality. In this study, we evaluated heavy metal contamination (Hgtot, Pb, Cd) in the riverine habitat, prey (crustaceans and fish), and otter feces in two Ramsar wetlands with contrasting upstream contamination discharges: Río Blanco and Río Caño Grande in Veracruz, Mexico, during the dry, the wet, and the nortes seasons. Most comparisons revealed no differences between sites while seasonal differences were repeatedly detected for all of the compartments. Higher concentrations of Pb during the dry season and of Cd during the wet season in otter feces mirrored differences detected in the most seasonally consumed prey. Compared with fecal methylmercury values reported for the European otter (0.25–0.75 mg kg?1) in unprotected areas, the Hgtot levels that we measured were lower (0.02–0.17 mg kg?1). However, Pb (117.87 mg kg?1) and Cd (9.14 mg kg?1) concentrations were higher (Pb, 38.15 mg kg?1 and Cd, 4.72 mg kg?1) in the two Ramsar wetlands. Protected areas may shelter species, but those with water-linked diets may suffer the effect of chemicals used upstream.  相似文献   

10.
The area of the Black Triangle has been exposed to extreme levels of acid deposition in the twentieth century. The chemical weathering of sandstones found within the Black Triangle became well-known phenomenon. Infiltration of acid rain solutions into the sandstone represents the main input of salt components into the sandstone. The infiltrated solutions–sandstone percolates–react with sandstone matrix and previously deposited materials such as salt efflorescence. Acidic sandstone percolates pH?3.2–4.8 found at ten sites within the National Park Bohemian Switzerland contained high Al-tot (0.8–10 mg?L?1) concentrations and high concentrations of anions SO4 (5–66 mg?L?1) and NO3 (2–42 mg?L?1). A high proportion (50–98 %) of Al-tot concentration in acid percolates was represented by toxic reactive Aln+. Chemical equilibrium modeling indicated as the most abundant Al species Al3+, AlSO4 +, and AlF2+. The remaining 2–50 % of Al-tot concentration was present in the form of complexes with dissolved organic matter Al-org. Mobilization and transport of Al from the upper zones of sandstone causes chemical weathering and sandstone structure deterioration. The most acidic percolates contained the highest concentrations of dissolved organic material (estimated up to 42 mg?L?1) suggesting the contribution of vegetation on sandstone weathering processes. Very low concentrations of Al-tot in springs at BSNP suggest that Al mobilized in unsaturated zone is transported deeper into the sandstone. This process of mobilization could represent a threat for the water quality small-perched aquifers.  相似文献   

11.
A new four-step hierarchy method was constructed and applied to evaluate the groundwater quality and pollution of the Dagujia River Basin. The assessment index system is divided into four types: field test indices, common inorganic chemical indices, inorganic toxicology indices, and trace organic indices. Background values of common inorganic chemical indices and inorganic toxicology indices were estimated with the cumulative-probability curve method, and the results showed that the background values of Mg2+ (51.1 mg L?1), total hardness (TH) (509.4 mg L?1), and NO3 ? (182.4 mg L?1) are all higher than the corresponding grade III values of Quality Standard for Groundwater, indicating that they were poor indicators and therefore were not included in the groundwater quality assessment. The quality assessment results displayed that the field test indices were mainly classified as grade II, accounting for 60.87% of wells sampled. The indices of common inorganic chemical and inorganic toxicology were both mostly in the range of grade III, whereas the trace organic indices were predominantly classified as grade I. The variabilities and excess ratios of the indices were also calculated and evaluated. Spatial distributions showed that the groundwater with poor quality indices was mainly located in the northeast of the basin, which was well-connected with seawater intrusion. Additionally, the pollution assessment revealed that groundwater in well 44 was classified as “moderately polluted,” wells 5 and 8 were “lightly polluted,” and other wells were classified as “unpolluted.”  相似文献   

12.
The developed method is based on cold-induced aggregation microextraction of Se(IV) using the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as an extractant followed by spectrophotometry determination. The extraction of Se(IV) was performed in the presence of dithizone as the complexing agent. In this method, a very small amount of 1-butyl-3-methylimidazolium hexafluorophosphate was added to the sample solution containing Se-dithizone complex. Then, the solution was kept in a thermostated bath at 50 °C for 4 min. Subsequently, the solution was cooled in an ice bath and a cloudy solution was formed. After centrifuging, the extractant phase was analyzed using a spectrophotometric detection method. Some important parameters that might affect the extraction efficiency were optimized (HCl, 0.6 mol L?1; dithizone, 4.0?×?10?6 mol L?1; ionic liquid, 100 μL). Under the optimum conditions, good linear relationship, sensitivity, and reproducibility were obtained. The limit of detection (LOD) (3Sb/m) was 1.5 μg L?1, and the relative standard deviation (RSD) was 1.2 % for 30 μg L?1 of Se(IV). The linear range was obtained in the range of 5–60 μg L?1. It was satisfactory to analyze rice and various water samples.  相似文献   

13.
Acid volatile sulfide (AVS) has been regarded as an important factor controlling metal bioavailability in anoxic sediments, but its effect on metal accumulation under natural conditions is poorly understood. Here, a field study of the influence of AVS on metal accumulation by Limnodrilus sp. in a heavily polluted river is provided. Most of the study area was subject to anaerobic and strongly reducing conditions, and the concentration of trace metals in surface sediments was high, as were the concentration of AVS and simultaneously extracted metals (SEM; average AVS?=?20.3 μmol g?1, average ∑SEM5?=?9.42 μmol g?1; ∑SEM5 refers to the sum of SEMCd, SEMCu, SEMPb, SEMNi, and SEMZn). Only a few species and small quantities of benthic invertebrates were found, and Limnodrilus sp. was dominant. There was no correlation between trace metal accumulation and (SEM-AVS), and in stations where (SEM-AVS) <0, the absolute value of bioaccumulation was high (average ∑BIO5?=?4.07 μmol g?1; ∑BIO5 refers to the sum of BIOCd, BIOCu, BIOPb, BIONi, and BIOZn), indicating that there was no relationship between (SEM–AVS) and metal accumulation in Limnodrilus sp. This was likely because Limnodrilus sp. ingest sediment particles as their main food source, so pore water metals play a minor role in their bioaccumulation (BIO) of materials. However, ∑BIO5 was significantly correlated with ∑SEM5 (r?=?0.795, p?<?0.01), revealing that the large number of sulfide-bound metals (SEM) in sediments may play an important role in metal accumulation in Limnodrilus sp., which can assimilate sulfide-associated metals by the help of the digestive fluids in the digestive systems.  相似文献   

14.
In spite of its outstanding ecological and touristic importance the Ria Formosa Lagoon shows signs of anthropogenic pollution. Nonetheless, until the present survey no studies had ever documented the measurement of natural and pharmaceutical estrogens (17β-estradiol, estrone, and 17α-ethynylestradiol), xenoestrogenic industrial pollutants (4-octylphenol, 4-nonylphenol, and their mono and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein), and sitosterol in this area. The 17 compounds measured herein are known as endocrine disrupters (EDCs) and act over the endocrine system even in few amounts (ng L?1–μg L?1). Thus to conclude about the influx of EDCs in the lagoon, water samples were taken every 2 months, during 1 year (2010), in low tide at nine sites distributed along the coastline. Water samples (1 L) were preconcentrated in the Oasis HLB cartridges and cleaned in silica cartridges before their analysis by GC-MS. Data showed the ubiquitous presence of potentially hazardous amounts of estrogens (particularly of ethynylestradiol, up to 24.3 ng L?1), nonylphenol (up to 547 ng L?1), and sitosterol (up to 12,300 ng L?1), mainly in summer, suggesting that the increase of the local number of inhabitants (tourists), the rise of the water temperature (up to 26 °C), and the blooming of local flora may interfere with the water quality parameters. This makes the lagoon a potential model to study. Taking into account the data, it was concluded that there are conditions for the occurrence of endocrine disruption in aquatic animals, even in areas included in the natural park of the Formosa. Besides, both the high amounts of un-ionized ammonia (up to 0.3 mg L?1) and phosphates (up to 1.6 mg L?1) my pose risks for local fauna and humans.  相似文献   

15.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

16.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   

17.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

18.
The Fusaro Lagoon is a shallow lagoon, located in SW Italy, largely influenced in the last decades by several anthropic impacts. The study examined the pollution status of the lagoon, during year 2011–2012 at nine sampling stations with the aim to find out proper measurements of water lagoon restoration. Concentrations of heavy metals (HMs) (aluminium [Al], barium [Ba], cadmium [Cd], copper [Cu], iron [Fe], manganese [Mn], vanadium [V] and zinc [Zn]) were examined in water, sediments and specimens of the ascidian Ciona intestinalis sp. A. Low levels of dissolved oxygen concentration were detected at many stations, with mean values of 5.2–6.4 mg L?1. The redox potential of surface waters was also low, ?2.7 to 50.7 mV. Sediments possessed high organic matter content, 17.7–29.4 %. In sediments, the mean Zn level, 251.4 mg kg?1, was about sixfold higher than that recorded in year 2000 (38.5 mg kg?1) and considerably higher than that recorded in 2007 (191 mg kg?1). The mean levels of Cd were outstandingly high, with a mean value of 70.5 mg kg?1, about 30- and 50-fold higher than those determined in 2000 and 2007, respectively. Cadmium (Cd), Cu and nickel (Ni) appeared in excess with respect to most current guidelines, reaching significant pollution levels. C. intestinalis sp. A was detected only at few stations, with metals accumulated preferentially in the body in respect to the tunic, from 1.2 times for Zn (178 mg kg?1) to 4.0 times for V (304 mg kg?1). Data suggests the necessity of an immediate action of eco-compatible interventions for environmental restoration.  相似文献   

19.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

20.
To assess metal mobility in pruning waste and biosolids compost (pH?6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g?L?1, pH?2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7?±?0.1–3.3?±?0.1 mg?kg?1), Fe (49.2?±?5.2–76.8?±?6.8 mg?kg?1), and Mn (7.2?±?1.1–11.4?±?0.7 mg?kg?1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4?±?0.3–42.2?±?2.9 mg?kg?1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号