首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

2.
Matthews DP  Gonzalez A 《Ecology》2007,88(11):2848-2856
Under current rates of environmental change many populations may be found in habitats of low quality and low conservation value, creating population sinks. We test recent theory that suggests, surprisingly, that stochastic environmental variability may enhance the long-term persistence of sink metapopulations. Using experimental populations of Paramecium aurelia we show that it is possible for a metapopulation comprised entirely of sink populations to persist for many generations in a random environment. In accordance with the theory, we show that positive temporal autocorrelation and low spatial correlation in the environment can ensure the long-term persistence and enhance the mean and maximum abundance of sink metapopulations. High levels of spatial correlation in the environment created strong population synchrony and limited the persistence time of the sink metapopulations. These results have important implications for the development of a theory underlying the synergistic effects of habitat fragmentation and environmental change on population persistence.  相似文献   

3.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   

4.
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.  相似文献   

5.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   

6.
Diez JM  Pulliam HR 《Ecology》2007,88(12):3144-3152
Abiotic and biotic processes operate at multiple spatial and temporal scales to shape many ecological processes, including species distributions and demography. Current debate about the relative roles of niche-based and stochastic processes in shaping species distributions and community composition reflects, in part, the challenge of understanding how these processes interact across scales. Traditional statistical models that ignore autocorrelation and spatial hierarchies can result in misidentification of important ecological covariates. Here, we demonstrate the utility of a hierarchical modeling framework for testing hypotheses about the importance of abiotic factors at different spatial scales and local spatial autocorrelation for shaping species distributions and abundances. For the two orchid species studied, understory light availability and soil moisture helped to explain patterns of presence and abundance at a microsite scale (<4 m2), while soil organic content was important at a population scale (<400 m2). The inclusion of spatial autocorrelation is shown to alter the magnitude and certainty of estimated relationships between abundance and abiotic variables, and we suggest that such analysis be used more often to explore the relationships between species life histories and distributions. The hierarchical modeling framework is shown to have great potential for elucidating ecological relationships involving abiotic and biotic processes simultaneously at multiple scales.  相似文献   

7.
The Partners in Flight North American Landbird Conservation Plan provided estimates of population sizes for 448 landbird species using a multiplicative model. Input parameters in this calculation included the area of state × Bird Conservation Region polygons, area-specific mean Breeding Bird Survey counts circa 1995, and adjustment factors for the distance over which species may presumably be correctly counted, the assumed pairing of singing males with non-singing females, and variability in the propensity of birds to sing over the course of the survey day. I assessed the sensitivity of this population calculation to changes in the input parameters. I assessed both local and global sensitivity of the model to changes in the parameters with Monte Carlo one-at-a-time simulations and the Fourier amplitude sensitivity test (FAST). Monte Carlo simulations were an estimate of local model sensitivity whereas FAST estimated global model sensitivity, accommodating the potential shared variance between model parameters. Monte Carlo simulations suggested population estimates were 39% more sensitive to changes in the detection distance adjustment than to the other parameters; the other parameters were nearly equal in their contribution to model sensitivity. Conversely, FAST analysis determined that each of the input variables aside from the pair adjustment provided roughly equal contributions to variability in population estimates. The most efficient means for improving continental population estimates for birds surveyed by the Breeding Bird Survey will be through increased scrutiny of the species-specific distance detection and time-of-day adjustments and improved understanding in the spatial and temporal variability in the mean Breeding Bird Survey count.  相似文献   

8.
Abstract: Spatial patterns in population turnover were analyzed for five plant species confined to a patchy and isolated habitat, serpentine seeps: annuals Helianthus exilis and Mimulus nudatus and perennials Senecio clevelandii , Astragalus clevelandii , and Delphinium uliginosum . A 3-year survey showed that, over a preceding 15-year period, 32 of 132 known populations in a 4200-ha area disappeared, and 65 new populations appeared. Populations that disappeared were significantly more isolated from conspecific populations than were surviving populations. Populations that disappeared were also marginally significantly closer to human-caused disturbances than were populations that survived. Vacant sites in which new populations appeared were significantly less isolated from conspecific populations than sites remaining vacant. Spatial patterns in population density were analyzed for three of the species for 3 years at 50 sites in a 20 × 40 km region. From 1997 to 1998, population densities of each species changed synchronously throughout the region. From 1998 to 1999, one species (   Mimulus nudatus ) again showed synchrony, and populations of the other two species (   Helianthus exilis , Delphinium uliginosum ) remained asynchronous and spatially uncorrelated. The five species we studied all appear to be persisting well at the regional scale, despite recent disturbance to the study region. These results suggest that for rare plants in isolated habitats, the spatial configuration of populations may have an important influence on local population persistence.  相似文献   

9.
Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range‐restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state‐space modeled cormorant counts at 3 colonies, 22 years of fisheries‐independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20–30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small‐scale marine protected areas, followed by robust assessment and adaptive‐management, to confirm population‐level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries.  相似文献   

10.
Karanth KU  Nichols JD  Kumar NS  Hines JE 《Ecology》2006,87(11):2925-2937
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.  相似文献   

11.
We analyzed possible causes of changes in species abundance, range size, and diversity as well as extinctions and colonizations in a central European bird community. Using data from the semiquantitative "Lake Constance" breeding bird atlas, we demonstrated that changes in regional abundances from 1980–1981 to 1990–1992 of 151 coexisting bird species were influenced by breeding habitat and migratory status. Significant declines were found in populations of farmland species and long-distance migrants. Farmland species lost parts of their ranges but hardly changed in local abundance in sites where they still occurred. In contrast, declines in long-distance migrants were caused by significant declines in local abundance with only slight loss of occupied range. Regional extinctions and colonizations were predictable from overall population trends. For example, all species that went extinct were either farmland species or long-distance migrants. Avian community composition was influenced by disproportionate declines of abundant species. This led to declines in the total number of breeding pairs and in community biomass and to increases in community evenness, but to only slight declines in species richness. Future conservation efforts in Europe need to focus more on farmland species and on understanding causes for the declines of long-distance migrants.  相似文献   

12.
Møller AP  Soler JJ  Vivaldi MM 《Ecology》2010,91(9):2769-2782
Species vary in abundance and heterogeneity of spatial distribution, and the ecological and evolutionary consequences of such variability are poorly known. Evolutionary adaptation to heterogeneously distributed resources may arise from local adaptation with individuals of such locally adapted populations rarely dispersing long distances and hence having small populations and small overall ranges. We quantified mean population density and spatial heterogeneity in population density of 197 bird species across 12 similarly sized regions in the Western Palearctic. Variance in population density among regions differed significantly from a Poisson distribution, suggesting that random processes cannot explain the observed patterns. National estimates of means and variances in population density were positively correlated with continental estimates, suggesting that means and variances were maintained across spatial scales. We used Morisita's index of population abundance as an estimate of heterogeneity in distribution among regions to test a number of predictions. Heterogeneously distributed passerine bird species as reflected by Morisita's index had small populations, low population densities, and small breeding ranges. Their breeding populations had been consistently maintained at low levels for considerable periods of time, because the degree of genetic variation in a subsample of non-passerines and passerines was significantly negatively related to heterogeneity in distribution. Heterogeneously distributed passerine species were not more often habitat specialists than homogeneously distributed species. Furthermore, heterogeneously distributed passerine species had high annual adult survival rates but did not differ in annual fecundity from homogeneously distributed species. Heterogeneously distributed passerine species rarely colonized urban habitats. Finally, homogeneously distributed bird species were hosts to a greater diversity of blood parasite species than heterogeneously distributed species. In conclusion, small breeding ranges, population sizes, and population densities of heterogeneously distributed passerine bird species, combined with their low degree of genetic variability, and their inability to colonize urban areas may render such species particularly susceptible to human-influenced global climatic changes.  相似文献   

13.
Globally, anthropogenic land-cover change has been dramatic over the last few centuries and is frequently invoked as a major cause of wildlife population declines. Baseline data currently used to assess population trends, however, began well after major changes to the landscape. In the United States and Canada, breeding bird population trends are assessed by the North American Breeding Bird Survey, which began in the 1960s. Estimates of distribution and abundance prior to major habitat alteration would add historical perspective to contemporary trends and allow for historically based conservation targets. We used a hindcasting framework to estimate change in distribution and abundance of 7 bird species in the Willamette Valley, Oregon (United States). After reconciling classification schemes of current and 1850s reconstructed land cover, we used multiscale species distribution models and hierarchical distance sampling models to predict spatially explicit densities in the modern and historical landscapes. We estimated that since the 1850s, White-breasted Nuthatch (Sitta carolinensis) and Western Meadowlark (Sturnella neglecta) populations, 2 species sensitive to fragmentation of oak woodlands and grasslands, declined by 93% and 97%, respectively. Five other species we estimated nearly stable or increasing populations, despite steep regional declines since the 1960s. Based on these estimates, we developed historically based conservation targets for amount of habitat, population, and density for each species. Hindcasted reconstructions provide historical perspective for assessing contemporary trends and allow for historically based conservation targets that can inform current management.  相似文献   

14.
Studies on spatiotemporal pattern of population abundance predict that close populations should exhibit a high level of synchrony, reflected in a parallel time variation of at least one demographic parameter. We tested this prediction for two threatened species of Procellariiformes sharing similar life history traits: the European Storm Petrel (Hydrobates pelagicus) and the Balearic Shearwater (Puffinus mauretanicus). Within each species, we compared adult survival, proportion of transients (breeders that do not settle), and average productivity at two neighboring colonies. Physical and environmental features (e.g., food availability) of the breeding sites were similar. However, while Balearic Shearwater colonies were free of predators, aerial predators occurred especially in one colony of the European Storm Petrel. Despite this difference, we found similar results for the two species. A high proportion of transient birds was detected in only one colony of each species, ranging between 0.00-0.38 and 0.10-0.63 for the petrels and shearwaters, respectively. This seems to be an emergent feature of spatially structured populations of seabirds, unrelated to colony size or predator pressure, that can have important demographic consequences for local population dynamics and their synchrony. Local survival of resident birds was different at each colony, an unexpected result, especially for predator-free colonies of Balearic Shearwater. Productivity varied between the two colonies of European Storm Petrels, but not between the two colonies of Balearic Shearwaters. We demonstrated that within each species, several demographic parameters were colony specific and sufficiently different to generate short-term asynchronous dynamics. Our findings suggest that, in spatially structured populations, local factors, such as predation or small-scale habitat features, or population factors, such as individual quality or age structure, can generate unexpected asynchrony between neighboring populations.  相似文献   

15.
Forecasting the temporal trend of a focal species, its range expansion or retraction, provides crucial information regarding population viability. To this end, we require the accumulation of temporal records which is evidently time consuming. Progress in spatial data capturing has enabled rapid and accurate assessment of species distribution across large scales. Therefore, it would be appealing to infer the temporal trends of populations from the spatial structure of their distributions. Based on a combination of models from the fields of range dynamics, occupancy scaling and spatial autocorrelation, here I present a model for forecasting the population trend solely from its spatial distribution. Numerical tests using cellular automata confirm a positive correlation, as inferred from the model, between the temporal change in species range sizes and the exponent of the power-law scaling pattern of occupancy. The model is thus recommended for rapid estimation of species range dynamics from a single snapshot of its current distribution. Further applications in biodiversity conservation could provide a swift risk assessment, especially, for endangered and invasive species.  相似文献   

16.
The philopatric larval dispesal and small effective population sizes characteristic of many clonal species should promote the development of significant small-scale genetic structure within populations as a result of isolation-by-distance. We used spatial autocorrelation statistics to detect genetic structure, arising from both clonal reproduction and philopatric dispersal of sexual propagules, for five allozyme loci within populations of the soft coral Alcyonium sp. In a population on Tatoosh Island, Washington, USA, sampled in 1991/1992, we found significant positive spatial autocorrelation at all loci among individuals separated by <40 cm, reflecting the presence of significant smallscale genetic structure due to associations among clonemates. For 4 of 5 loci, however, we detected no significant spatial autocorrelation among the different clones within this population over distances of 1 to 40 m. Analysis of soft-coral populations from six additional, topographically diverse sites in the north-east Pacific also did not reveal significant spatial autocorrelation among clones at any loci. This general lack of spatial autocorrelation of genotypes among clones suggests that significant small-scale genetic structure has not arisen in populations of Alcyonium sp. as a consequence of isolation-by-distance.  相似文献   

17.
This study illustrates the use of modern statistical procedures for better wildlife management by addressing three key issues: determination of abundance, modeling of animal distributions and variability of diversity in space and time. Prior information in Markov Chain Monte Carlo (MCMC) methods is used to improve estimates of abundance. Measures of autocorrelation are included when modeling distributions of animal counts, and a diversity index to indicate species abundance and richness for large herbivores is developed. Data from the Masai Mara ecosystem in Kenya are used to develop and demonstrate these procedures. The new abundance estimates are up to 35% more accurate than those obtained by existing methods. Significant temporal changes in spatial patterns are found from a space-time analysis of elephant counts over a 20-year period, with strong interactions over 5 km and 6 months space and time separations, respectively. The new diversity index is sensitive to both high abundance and species richness and is also able to capture year to year variation. It indicates an overall marginal decrease in diversity for large herbivores in the Mara ecosystem. The space-time analyses and diversity index can easily be computed thereby providing tools for rapid decision making.  相似文献   

18.
《Ecological modelling》2007,200(1-2):33-44
In modelling spatial distribution of species, ignoring spatial autocorrelation (SA) and multicollinearity may lead to false ecological conclusions. Here we take into account both issues for examining and modelling the spatial pattern of abundance of the globally threatened lesser kestrel (Falco naumanni) during summer in a 38,400 ha area of northwestern Spain where large premigratory aggregations of the species occur. Spatial pattern was examined using Moran's correlogram, and models were built including geographical coordinates and autocovariate terms (which account for SA) in generalized linear models (GLM) and hierarchical partitioning (HP) models. HP models allow to alleviate multicollinearity. A grid-based approach was used by dividing the study area in 24 contiguous 4 km × 4 km squares where birds were counted in 2–3 visits per square (response variable). Environmental coarse-grained variables were extracted from a geographic information system (GIS) at three spatial extents. Moran's correlogram showed that lesser kestrel mean abundance per square was spatially autocorrelated up to 4–8 km. The results from both GLM and HP analyses were roughly compatible. The GLM models explained 80.0% of the variation in kestrel abundance and were the same at the three spatial extents. Lesser Kestrel abundance was not significantly explained by landscape variables, but was negatively related to both the distance to the nearest communal roost and distance to the nearest breeding colony with more of 10 breeding pairs of lesser kestrel. An autocovariate term added later in the GLM models improved both their explanatory power (from 74.5 to 80.0%) and model residuals, which were not longer spatially autocorrelated, fulfilling thus the statistical assumption of independent errors. Findings suggest that the spatial distribution of abundance of summering lesser kestrel is, at least, partially driven by endogenous causes, such as conspecific attraction. Exogenous causes such as finer-scale variables (e.g. type of crops and food available) are yet likely needed for lesser kestrel-environment relationships.  相似文献   

19.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

20.
The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the general purpose phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号