首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 619 毫秒
1.
采用水热法合成Mg-AI型水滑石(LDHs),研究LDHs及其焙烧产物C-LDHs对水溶液中F^-的吸附行为,并用X射线衍射和热重分析对LDHs,C-LDHs以及吸附F^-后的C-LDHs(R-LDHs)的结构和性质进行了表征.结果表明:LDHs对水溶液中的F^-基本没有吸附,而C-LDHs对F^-有较大的吸附容量,同时,酸性的增强有利于C-LDHs对F^-的吸附.C-LDHs对F^-吸附4h后可达到吸附平衡.通过吸附F^-,C-LDHs的结构由吸附前的混合氧化物固溶体恢复到层状结构,表明C-LDHs对水溶液中F^-的高吸附性能是因为其具有较强的“记忆效应”.  相似文献   

2.
层状氢氧化镁铝对染料酸性橙Ⅱ的脱色性能   总被引:2,自引:0,他引:2  
赵毅  牛向楠  王山  朱洪涛 《环境化学》2011,30(5):1019-1024
分别用层状氢氧化镁铝(LDHs)和焙烧层状氢氧化镁铝(CLDH)作为吸附剂,吸附脱除水溶液中染料酸性橙Ⅱ,考察了Mg/Al物质的量之比、吸附剂的投加量、脱色时间、初始pH值等因素对脱色率的影响.结果表明,以Mg/Al物质的量之比为3制得的层状氢氧化镁铝对酸性橙Ⅱ溶液的脱色效果最好;室温下,3.0 g·L-1LDHs和1...  相似文献   

3.
伊利石对水溶液中低浓度铀的吸附   总被引:1,自引:0,他引:1  
采用静态实验方法研究了伊利石对水溶液中铀的吸附特性,通过批实验考察了反应时间、溶液初始浓度、p H值、离子强度、固液比以及温度对吸附的影响,用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)表征伊利石吸附铀前后结构的变化,探讨了伊利石对铀的吸附等温方程和热力学规律,分析其反应机制.实验结果显示,伊利石与低浓度铀溶液接触后立即反应,1 h后反应基本达到平衡;溶液p H和离子强度对伊利石吸附铀的影响显著,当p H=4—7、离子强度为0.001 mol·L-1时,吸附效果最好;在一定条件下,伊利石对水溶液中低浓度铀的吸附量与铀初始浓度呈正比,与固液比呈反比;吸附等温线符合Freundlich模型,相关系数可达0.9966;伊利石对铀的吸附属于吸热反应,反应自发进行,高温促进伊利石的吸附行为.  相似文献   

4.
本研究选取油菜秸秆为原料,在600℃下热解得到生物炭和磷酸改性生物炭,并用共沉淀法制备3种改性生物炭-LDHs(Mg-Al-NO_3)复合材料.采用批量吸附法研究不同pH、吸附时间和不同生物炭/LDHs配比条件下复合材料对双酚A的吸附特性,借助XRD、FTIR和BET等测试手段探究了复合材料吸附双酚A的机制.结果表明,改性生物炭-LDHs(Mg-Al-NO_3)复合材料吸附双酚A的吸附平衡时间为4 h,符合准二级动力学方程(R~20.99);复合材料对双酚A的吸附效果稍逊于改性生物炭,改性生物炭在复合材料中所占比重越大,吸附效果越好.当pH值在5.0—9.0范围内变化时,改性生物炭-LDHs(Mg-Al-NO_3)复合材料对双酚A的吸附量呈下降趋势,且在pH=9.0时达到最小值.等温吸附模型数据表明,复合材料用Freundlich等温吸附模型效果更好.通过XRD、BET、FTIR测试研究发现,由于LDHs占据了生物炭表面的活性位点,致使生物炭与双酚A之间的相互作用减弱,降低了复合物的吸附能力.本研究结果初步阐释了改性生物炭-LDHs(Mg-Al-NO_3)复合材料吸附双酚A的机理,为生物炭-LDHs复合材料处理水体中有机污染物的应用提供了借鉴和参考.  相似文献   

5.
改性斜发沸石在水处理中的应用   总被引:1,自引:1,他引:1  
斜发沸石钠改性后能明显提高对Cu2 ,Pb2 ,Cd2 等重金属离子的交换能力,交换顺序为Cu2 >Pb2 >Cd2 ,对Cu2 -Pb2 和Cd2 -Pb2 混合体系有较好的分离效果.斜发沸石经铁活化后吸附水中F-的能力明显改善,吸附容量从57.0mg·kg-1提高到420.5mg·kg-1,吸附行为能满足Frendlich等温方程,是吸热过程,属异种电荷吸附方式和阴离子交换方式共存的化学吸附.斜发沸石经微波磷改性后,沸石骨架上的P原子能部分取代Si和Al原子形成Si-O-P 结构,具有阴离子交换能力,对水中As(Ⅲ)的吸附能力明显提高,吸附为放热过程,吸附机理为沸石骨架配位阴离子与水中As(Ⅲ)阴离子交换过程.  相似文献   

6.
焙烧层状氢氧化镁铝对水溶液中亚硝酸盐的吸附脱除   总被引:2,自引:0,他引:2  
通过静态吸附实验,研究了焙烧层状氢氧化镁铝(Mg-Al CLDH)对水溶液中NO2-的吸附脱除性能,并用粉末X射线衍射对Mg-Al CLDH吸附前后的结构进行了表征.结果表明,Mg-Al CLDH可有效脱除水溶液中的业硝酸盐(NO2-),对NO2-的脱除是通过"结构记忆"效应实现的,当NO-2初始浓度高达15mgN·l-1时,经0.10g Mg-Al CLDH处理后,溶液中残余浓度小于lmgN·l-1.在293-323 K温度范围内,NO2-在Mg-Al CLDH上的饱和吸附量为17.24-29.94 mgN·g-1,吸附量明显高于其它吸附剂;吸附量随温度的升高而增大,表现为吸热吸附;吸附过程符合Langmuir线性等温方程式.吸附速率随温度的升高而迅速增大,伪二级动力学方程可用来描述其吸附动力学过程;吸附Ea为109.94 kJ·mol-1,Mg-Al CLDH对NO2-的吸附主要是化学吸附,Mg-Al CLDH对NO2-的脱除率基本不受溶液初始pH值的影响,吸附量随离子强度的增大而减小,正交实验结果显示溶液初始浓度是影响吸附量的最主要因素.  相似文献   

7.
改性碳纳米管原始样品吸附亚甲基蓝的性能研究   总被引:4,自引:0,他引:4  
利用直接制备的碳纳米管原始样品作为染料亚甲基蓝的吸附剂,采用次氯酸钠溶液对于碳纳米管原始样品进行表面修饰改性,改性处理后碳纳米管对亚甲基蓝吸附性较好,本工艺简单有效,所获得的吸附剂具有磁性,吸附过后用磁铁易于达到固液分离的效果.吸附性能结果表明:本吸附剂对水溶液中亚甲基蓝的吸附在60 min基本达到平衡,吸附过程符合准二级动力学模型(R2>0.99).改性后的磁性碳纳米管吸附亚甲基蓝的平衡吸附量qe与亚甲基蓝溶液的平衡浓度Ce的关系满足Langmuir(R2>0.99)、Freundlich(R2>0.91)以及Dubinin-Radushkevich(D-R)(R2>0.92)等温吸附模型.通过Langmuir模型计算可知改性磁性碳纳米管对亚甲基蓝的最大吸附容量为101.6 mg.g-1,由D-R模型计算结果可以推断,次氯酸钠改性后的磁性碳纳米管对水溶液中亚甲基蓝的吸附机理以化学吸附为主.  相似文献   

8.
镧掺杂纳米材料合成及其高氟选择性吸附特性   总被引:2,自引:0,他引:2  
采用共沉淀法制备了镧渗杂的纳米镁铝层状双氢氧化物材料(LDHs),获得了一类对氟具有选择性的新型吸附材料.实验表征了LDH、其焙烧产物(LDOs)以及吸附氟后的材料(F-LDHs)的微观形态、体相组成等性质的变化,通过批处理试验和吸附柱试验对其工艺特性及影响因素进行了深入分析.实验结果表明,材料经600℃焙烧10min,在含200mg·l~(-1)SO_4~(2-),氟浓度为10mg·l~(-1)的配水中投加0.1g LDOs吸附240min,最高除氟率可达93.53%;在含200mg·l~(-1)SO_4~(2-)的氟溶液中,镁铝铜LDOs吸附氟的容量高于镁铝LDOs;吸附柱实验中,14h时出水氟含量小于国家标准(1 mg·l~(-1));共存阴离子对材料的除氟干扰强度排序为:Co_3~(2-)>PO_4~(3-)>NO_3~->Cl~-.材料吸附氟后可用0.5mg·l~(-1)的Na_2CO_3洗脱,并经600℃焙烧10min再生,再生4次后选择性除氟效果稳定.  相似文献   

9.
无机阴离子对镉、铅解吸特性的影响   总被引:3,自引:0,他引:3  
陈苏  孙丽娜  晁雷  孙铁珩 《生态环境》2008,17(1):105-108
土壤中重金属的解吸直接影响重金属在环境中的形态转化和植物有效性.而地表水环境及土壤中的无机阴离子能与重金属离子络合,影响重金属在环境中的迁移和作物的吸收.因此,有关无机阴离子对重金属解吸特性影响的研究,将有利于了解重金属的吸附-解吸机制及其控制措施.文章以我国东北地区草甸棕壤作为研究对象,采用静态解吸实验研究无机阴离子(C1-、SO42-、F-)对土壤中镉、铅的解吸行为的影响.结果表明,土壤中镉、铅的解吸率与无机阴离子类型、浓度密切相关;随着解吸液中无机阴离子(C1-、SO42-、F-)浓度的增大,土壤镉、铅的解吸率随之提高.C1-、SO42-、F-这3种无机阴离子对解吸土壤中镉的影响力顺序是:C1- > SO42- > F-;对解吸土壤中铅的影响力顺序是:SO42- >C1- > F-.  相似文献   

10.
氧化铜尾矿对水溶液中磷的吸附   总被引:1,自引:0,他引:1  
研究不同pH条件下氧化铜尾矿颗粒对水溶液中磷的吸附特性.结果表明:Langmuir方程能很好地描述氧化铜尾矿对磷素的等温吸附特征;影响氧化铜尾矿对磷素吸附的因素主要有尾矿的比表面积、钙及铁氧化物含量、水溶液中磷素的初始浓度、体系pH值等;其吸附量随着钙及铁氧化物含量的增加、磷素初始浓度的提高以及体系pH值的降低而增大;其吸附机制主要为物理吸附和化学吸附.  相似文献   

11.
• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation. • MMOs performs the best for Cr(VI) and E. coliNDM-1 simultaneous removal. • Possible antibacterial pathways of Cr-MMOs were proposed. Herein we provide a novel high-efficiency nanocomposite for bacterial capture based on mixed metal oxides (MMOs) with deleterious chromium properties. With both the layer structure of layered double hydroxides (LDHs) and the magnetic properties of Fe, MMOs enrich the location of ionic forms on the surface, providing a good carrier for adsorption of the heavy metal Cr(VI). The capacity for adsorption of Cr(VI) by MMOs can be as high as 98.80 mg/g. The prepared Cr(VI)-MMOs achieved extremely expeditious location of gram-negative antibiotic-resistant E. coliNDM-1 by identifying lipid bilayers. Cr-MMOs with a Cr loading of 19.70 mg/g had the best bactericidal effect, and the concentration of E. coliNDM-1 was decreased from ~108 to ~103 CFU/mL after 30 min of reaction. The binding of nitrogen and phosphorus hydrophilic groups to chromate generated realistic models for density functional theory (DFT) calculations. The specific selectivity of MMOs toward bacterial cells was improved by taking Cr(VI) as a transferable medium, thereby enhancing the antibacterial activity of Cr-MMOs. Under the combined action of chemical and physical reactions, Cr(VI)-MMOs achieved high capacity for inactivation of bacteria. Moreover, the metallic elements ratio in Cr-MMOs remained stable in their initial valence states after inactivation. This guaranteed high removal efficiency for both heavy metals and bacteria, allowing recycling of the adsorbent in practical applications.  相似文献   

12.
凹凸棒石对水中3,4-二氯苯胺的吸附   总被引:1,自引:0,他引:1  
研究了凹凸棒石对水中3,4-二氯苯胺(3,4-DCA)的吸附行为,对不同温度下(298K,303K,313K)的数据分别用Langmuir,Freundlich和Redlich-Peterson模式进行拟合,并用假一级方程和假二级方程描述凹凸棒石对3,4-DCA的吸附动力学过程,结果表明:吸附作用受pH值影响明显,在pH=4.O时,吸附量最大;凹凸棒石的吸附能力随着温度的升高而降低;Redlich-Peterson方程更适合描述3,4-DCA在凹凸棒石上的吸附行为;Gibbs自由能(△G0)、熵变(△S0)和焓变(△H0)值均小于零,说明此吸附过程是自发进行的、放热的物理吸附过程;假二级方程更适用于描述凹凸棒石对3,4-DCA的吸附动力学过程,  相似文献   

13.
Three adsorbents including TiO2, Ti-Ce, and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution. The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO2 adsorbent prepared through hydrolysis. Rare earth (Ce and La) oxides and TiO2 exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption. The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h, and the pseudo-second-order model described the sorption kinetics well. The sorption isotherms fitted the Langmuir model well, and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g-1, respectively, at the equilibrium fluoride concentration of 1.0 mg·L-1, much higher than the 1.7 mg·g-1 on the TiO2. The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5. The electrostatic interaction played an important role in fluoride removal by the three adsorbents, and Fourier transform infrared (FTIR) analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.  相似文献   

14.
The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.  相似文献   

15.
A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0-9.0. The adsorption capacity of the A1-Fe (hydr)oxides for arsenate and fluoride at pH 6.50.3 increased with increasing A1 content in the adsorbents. The linear relationship between the amount of OH released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4A1 : Fe indicated that the adsorption of arsenate and fluoride by A1- Fe (hydr)oxides was realized primarily through quantita- tive ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of A1-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4A1 : Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate.  相似文献   

16.
Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g–1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I IndustrialWastewater Discharge Standard for fluoride (<10 mg·L–1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.  相似文献   

17.
In this study, the adsorption characteristics of As(III) and As(V) from water and wastewater using polyacrylamide-grafted banana stem with quaternary ammonium functionality (PGBS-AE) were investigated. Infrared spectroscopic, and thermogravimetric analyses were performed to affirm the polymer grafting, functionality, morphology, and thermal stability. Batch experiments were carried out to understand the effect of contact time, concentration, pH, adsorbent dose, and temperature of the solution for the adsorption of As(III) and As(V) onto PGBS-AE. Equilibrium was achieved within 1 h and the optimum pH was found to be 9.0 and 3.0 for As(III) and As(V), respectively. Isotherm studies showed that the Langmuir equation fits best. Maximum adsorption capacities of 50 and 5.5?g?kg?1 were obtained for As(III) and As(V) at 30°C. The endothermic nature of adsorption was evident as the adsorption efficiency increased with temperature. The thermodynamic parameters were evaluated to explain the feasibility of adsorption and to predict the nature of adsorption. The competence of the adsorbent for practical purposes was also analyzed by treating with a fertilizer industry effluent sample. Studies pertaining to adsorbent regeneration and readsorption of As(III) and As(V) were carried out for four consecutive cycles.  相似文献   

18.
Al3+-bentonite clay (Alum-bent) was prepared by ion exchange of base cations on the matrices of bentonite clay. Intercalation of bentonite clay with Al3+ was performed in batch experiments. Parameters optimized include time, dosage, and Al3+ concentration. Physicochemical characterization of raw and modified bentonite clay was done by X-ray fluorescence, X-ray diffraction, energy dispersive X-ray spectrometry attached to scanning electron microscopy, Brunauer–Emmett–Teller analysis, cation exchange capacity (CEC) by ammonium acetate method, and pHpzc by solid addition method. Chemical constituents of water were determined by atomic absorption spectrometry (AAS), ion selective electrode (Crison 6955 Fluoride selective electrode) and a Crison multimeter probe. For fluoride removal, the effect of contact time, adsorbent dosage, adsorbate concentration, and pH were evaluated in batch procedures. The adsorption capacity of fluoride by modified bentonite clay was observed to be 5.7 mg g?1 at (26 ± 2) °C room temperature. Maximum adsorption of fluoride was optimum at 30 min, 1 g of dosage, 60 mg L?1 of adsorbate concentration, pH 2–12, and 1:100 solid/liquid (S/L) ratios. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order model than pseudo first order. Adsorption data fitted well to both the Langmuir and Freundlich adsorption isotherms, hence, confirming monolayer and multilayer adsorption. Alum-bent showed good stability in removing fluoride from ground water to below the prescribed limit as stipulated by World Health Organization. As such, it can be concluded that Alum-bent is a potential defluoridation adsorbent which can be applied in fabrication of point of use devices for defluoridation of fluoride-rich water in rural areas of South Africa and other developing countries. Based on that, this comparative study proves that Alum-bent is a promising adsorbent with a high adsorption capacity for fluoride and can be a substitute for conventional defluoridation methods.  相似文献   

19.
Both bottle-point and column-feeding experiments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic acid. Their adsorption isotherms onto such hypercrosslinked polymeric adsorbents as NDA-100 and NDA-99 could be well described by the Freundlich equations whose characteristics describe extrathermic and favorable adsorption processes. The adsorption towards NDA-100 mainly depended on the π-π interaction, while that towards NDA-99 was extremely influenced by the static-electric interaction. Additionally, the adsorptive capacity of salicylic acid on NDA-99 decreased while it increased on NDA-100 with the presence of 5-sulfosalicylic acid in the adsorptive environment as the competitive component. Comparatively, the adsorption capacity of 5-sulfosalicylic acid decreased on both resins with salicylic acid as the competitive component. In fact, the difference in the interaction between adsorbent and adsorbate resulted in the straight antagonism on the effective adsorption sites on the adsorbent. In conclusion, the adsorption selectivity of salicylic acid onto NDA-100 was obviously larger than that onto NDA-99 with the existence of 5-sulfosalicylic acid in the adsorptive environment. A satisfactory separation and recovery of tested solutes in aqueous phase could be foreseeably achieved by the sequencing adsorption technique involving NDA-100 as well as NDA-99.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号