首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This risk assessment on 1,1,2-trichloroethane (T112) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 22 studies for fish, 45 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 300 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.01 µg T112/l water and a worst case PEC of 5 µg T112/l water. The calculated PEC/PNEC ratios give a safety margin of 60 to 30,000 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   

2.
This risk assessment on 1,2-dichloroethane (EDC) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 21 studies for fish, 17 studies for invertebrates and 7 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 1100 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.5 µg EDC/l and a worst case PEC of 6.4 µg EDC/l. The calculated PEC/PNEC ratios give a safety margin of 170 to 2200 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   

3.
This risk assessment on trichloroethylene (TRI) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 19 studies for fish, 30 studies for invertebrates and 14 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 150 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.1 µg TRI/l water and a worst case PEC of 3.5 µg TRI/l water. The calculated PEC/PNEC ratios give a safety margin of 40 to 1,500 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern for food chain accumulation is expected.  相似文献   

4.
This risk assessment on chloroform was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 10 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a typical PNEC value of 72 µg/l. Due to limitations of the studies evaluated, a worst PNEC of 1 µg/l could also be used. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg chloroform per litre of water and a worst case PEC of 5 to 11.5 µg chloroform per litre of water. The calculated PEC/PNEC ratios give a safety margin of 6 to 360 between the predicted no effect concentration and the exposure concentrations. A worst case ratio, however, points to a potential risk for sensitive species. Refinement of the assessment is necessary by looking for more data. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   

5.
This risk assessment on 1,2-dichlorobenzene was carried out for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). Data from analytical monitoring programmes in large rivers and estuaries in the North Sea area were collected and evaluated on effects and environmental concentrations. Risk is indicated by the ratio of predicted environmental concentration (PEC) to predicted no-effect concentration (PNEC) for the marine aquatic environment. In total, 26 data for fish, 24 data for invertebrates and 17 data for algae were evaluated. Acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a final PNEC value of 37 microg/l. All available monitoring data indicate that 1,2-dichlorobenzene levels in estuaries are below 0.1 microg/l. Worst case concentrations in rivers are below 0.45 microg/l. With this value, calculated PEC/PNEC ratios give safety margins of 100 to 300, taking no account of dilution in the sea. 1,2-dichlorobenzene is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Convention for the Prevention of Marine Pollution (OSPAR-DYNAMEC) criteria. Environmental fate and effects data indicate that current use of 1,2-dichlorobenzene poses no risk to the aquatic environment.  相似文献   

6.
This risk assessment on monochlorobenzene was carried out for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). Data from analytical monitoring programmes in large rivers and estuaries in the North Sea area were collected and evaluated for effects and environmental concentrations. Risk is indicated by the ratio of predicted environmental concentration (PEC) to predicted no-effect concentration (PNEC) for the marine aquatic environment. In total, 27 data for fish, 24 data for invertebrates and 13 data for algae were evaluated. Acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a final PNEC value of 32 micro/l. Recent monitoring data indicate that monochlorobenzene levels in surface waters are below determination limits of 0.1, 0.2, 0.5 microg/l used in monitoring programs. Assuming that half of the lowest determination (0.1 microg/l) is typical, a PEC of 0.05 microg/l was derived. A worst case of 0.5 microg/l is assumed. PEC/PNEC ratios give safety factors of 60 to over 500, taking no account of dilution in the sea. Monochlorobenzene is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC) criteria. Environmental fate and effects data indicate that current use of monochlorobenzene poses no unacceptable risk to the aquatic environment.  相似文献   

7.
This risk assessment on dichloromethane was carried out specifically for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of 'predicted environmental concentrations' (PEC) to 'predicted no-effect concentrations' (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 6 studies for algae were evaluated. Both acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a PNEC value of 830 microg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1983--1995) support a typical PEC for dichloromethane lower than 0.2 microg/l and a worst case PEC of 13.6 microg/l. Dichloromethane is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). The calculated PEC/PNEC ratios give margins of 60 to 4000 between the PNEC and PEC, dilution within the sea would further increase these margins. It can be concluded that the present use of dichloromethane does not present a risk to the marine aquatic environment.  相似文献   

8.
This risk assessment on 1,4-dichlorobenzene was carried out for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). Data from analytical monitoring programs in large rivers and estuaries in the North Sea area were collected and evaluated on effects and environmental concentrations. Risk is indicated by the ratio of predicted environmental concentration (PEC) to predicted no-effect concentration (PNEC) for the marine aquatic environment. In total, 17 data for fish, 9 data for invertebrates and 7 data for algae were evaluated. Acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a final PNEC value of 20 microg/l. Recent monitoring data indicate that 1,4-dichlorobenzene levels in coastal waters and estuaries are below the determination limit of 0.1 microg/l used in monitoring programs. The worst case value recorded in river water is below 0.45 microg/l. Using these values, calculated PEC/PNEC ratios give safety margins of about 40-200, taking no account of dilution in the sea. Environmental fate and bioaccumulation data indicate that current use of 1,4-dichlorobenzene poses no risk to the aquatic environment.  相似文献   

9.
This risk assessment on 1,1,1-trichloroethane was carried out specifically for the marine environment, accordingly to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). 1,1,1-trichloroethane is being phased out of most uses because of its ozone depletion potential (ODP) under the Montreal Protocol. Production for emissive uses has already been phased out end 1995 in Europe and 1996 in the United States, Japan and other industrial countries. The risk assessment study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Environmental Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 14 studies for fish, 7 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic studies have been taken into account and the appropriate assessment factors have been used to calculate a PNEC value of 21 microg/l based on long term exposure. The PEC was derived from monitoring data. The PEC was set at 0.206 microg/l (worst case) and 0.024 microg/l (typical case) for coastal waters and estuaries and 0.6 microg/l (worst case) and <0.1 microg/l (typical case) for river waters. The calculated PEC/PNEC ratios, which do not take into account any dilution factor within the sea, correspond to a safety margin of 35 to 1000 between the aquatic effect and the exposure concentration. 1,1,1-trichloroethane is not a 'toxic, persistent and liable to bioaccumulate' substance according to the criteria as mentioned by the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of 1,1,1-trichloroethane does not present a risk to the marine aquatic environment.  相似文献   

10.
This risk assessment on vinyl chloride was carried out specifically for the marine environment, according to the methodology laid down in the European Union (EU) risk assessment Regulation (1488/94) and the Technical Guidance Documents for New and Existing Substances (TGD, 1996). Vinyl chloride is used for the production of polyvinyl chloride (PVC). The study consisted of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Exposure Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 6 studies for fish, 3 studies for invertebrates and one for algae have been evaluated. The appropriate assessment factors have been used to calculate a PNEC of 210 microg/l based on short-term exposure. For coastal waters and estuaries a worst case PEC of 0.15 microg/l is derived. For river waters a typical and worst case PEC of <0.008 and 0.4 microg/l is derived, respectively. These concentrations, which do not take into account any dilution within the sea, correspond to safety margins from 500 to 250,000 between the aquatic effect and the exposure concentration. Vinyl chloride is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of vinyl chloride does not present a risk to the marine aquatic environment.  相似文献   

11.
The existence of pharmaceuticals in the water environment is thought to be a potential problem for aquatic organisms. In this study, we conducted a nationwide survey to clarify the occurrence of 24 selected pharmaceuticals in major Japanese rivers and evaluated their environmental risk to aquatic organisms. We found a total of 22 substances in river waters at concentrations from several nanograms per liter to several micrograms per liter. We found the highest, which was 2.4 μg/L of caffeine, followed by 1.5 μg/L of crotamiton and 1.4 μg/L of sulpiride. We conducted an environmental risk assessment of the 22 pharmaceuticals detected in river water, for which predicted no-effect concentration (PNEC) values for crustacea and algae had been obtained. The measured environmental concentration/PNEC values of four substances, caffeine, carbamazepine, clarithromycin, and ketoprofen, exceeded 0.1 with the maximum value of 9.0 for clarithromycin. As clarithromycin exhibits a high environmental risk to aquatic organisms, particular attention is required.  相似文献   

12.
This study assesses potential ecological risk of resuspended sediment in the water column during the construction of a viaduct in the estuary of the Ulla river (Galicia, NW Iberian Peninsula), a shellfish production area. Chemical analyses and toxicity bioassays with elutriates were performed with sediments from the area where the three pillars of the viaduct will be located (CT1, CT2 and CT3) and a reference sediment (A2). Acute toxicity of the elutriate was evaluated in five species of three trophic levels (Isochrysis galbana, Paracentrotus lividus, Mytilus galloprovincialis, Venerupis pullastra and Siriella armata). The sediments of the pillars showed moderate levels of contamination by trace elements (Cu, Cr). Clam and sea urchin embryo-larval toxicity tests showed slightly higher sensitivity than mussel embryo tests, and toxicity was not detected for phytoplankton and mysid bioassays. The predicted no-effect environmental concentration (PNEC) was calculated from the arithmetic mean of the lowest calculated EC(50)s for each sampling site. The predicted environmental concentration (PEC) was estimated from a simple dilution model and the PEC/PNEC ratio was calculated according to different scenarios of resuspension. Negligible ecological risk in the water column is expected during construction of the pillars.  相似文献   

13.
It is now possible to formulate diagnostic selenium concentrations in four distinct ecosystem-level components; water, food-chain, predatory fish (consuming fish or invertebrate prey), and aquatic birds. Waterborne selenium concentrations of 2 µg/l or greater (parts per billion; total recoverable basis in 0.45 filtered samples) should be considered hazardous to the health and long-term survival of fish and wildlife populations due to the high potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects. In some cases, ultra-trace amounts of dissolved and particulate organic selenium may lead to bioaccumulation and toxicity even when total waterborne concentrations are less than 1 µg/l.Food-chain organisms such as zooplankton, benthic invertebrates, and certain forage fishes can accumulate up to 30 µg/g dry weight selenium (some taxa up to 370 µg/g) with no apparent effect on survival or reproduction. However, the dietary toxicity threshold for fish and wildlife is only 3 µg/g; these food organisms would supply a toxic dose of selenium while being unaffected themselves. Because of this, food-chain organisms containing 3 µg/g (parts per million) dry weight or more should be viewed as potentially lethal to fish and aquatic birds that consume them.Biological effects thresholds (dry weight) for the health and reproductive success of freshwater and anadromous fish are: whole body=4 µg/g; skeletal muscle=8 µg/g; liver=12 µg/g; ovaries and eggs=10 µg/g. Effects thresholds for aquatic birds are: liver=10 µg/g; eggs=3 µg/g. The most precise way to evaluate potential reproductive impacts to adult fish and aquatic bird populations is to measure selenium concentrations in gravid ovaries and eggs. This single measure integrates waterborne and dietary exposure, and allows an evaluation based on the most sensitive biological endpoint. Resource managers and aquatic biologists should obtain measurements of selenium concentrations present in water, food-chain organisms, and fish and wildlife tissues in order to formulate a comprehensive and conclusive assessment of the overall selenium status and health of aquatic ecosystems.  相似文献   

14.
通过检索在国内外期刊发表的文献中关于我国河流、湖泊中氯胺酮(KET)的数据,评估其在地表水中的暴露水平,利用风险商(RQ)初步分析KET在我国部分地表水环境中的生态风险。结果表明,我国地表水中KET的检出率为20%~100%,最高检出值为420 ng/L,基于发育、繁殖和行为等慢性毒性数据推导出的预测无效应浓度(PNEC)为1.36×10-6mg/L;基于慢性毒性计算的风险商值为0.03~36.76,表明我国地表水中KET存在风险,其中台湾淡水河、金梅河和广东珠江具有高风险,而北方大部分河流潜在风险较低。  相似文献   

15.
Organochlorines, metals, and trace elements were measured in liver, kidney, or whole-body tissues of canvasbacks (Aythya valisineria), lesser scaups (A. affinis), and greater scaups (A. marila) collected from San Francisco Bay and three coastal areas of California during the winter of 1986–1987. Potentially toxic concentrations of mercury (mean 10.4 µg/g, dry weight) and selenium (mean 32.7 µg/g, dry weight) were found in livers of scaups and canvasbacks from several San Francisco Bay sites. These elements varied spatially, temporally, and between species, with the highest concentrations found in late winter. Mean concentrations of mercury, selenium, and cadmium were generally higher in scaups than in canvasbacks. Of all the organochlorines included in the analyses, only p,p'-DDE and total PCBs were detected in all samples in this study. Mean whole-body concentrations of DDE and PCBs from San Francisco Bay ducks collected in late winter varied spatially and between species, but the concentrations were not considered toxic. Causes for inter-specific differences are unclear, but may be attributable to differences in diet, movement, or physiology.  相似文献   

16.
The concentration, distribution, and origin of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in river sediments from the western and southern catchments of the Bohai Sea, China. A toxicity assessment of 28 sediment samples collected from 15 main rivers was conducted by utilizing threshold and probable effect concentrations (TEC and PEC, respectively) derived from consensus-based sediment quality guidelines. The concentrations of total PAHs (∑PAH16) ranged from 0.14 to 10,757 μg/kg dry weight (mean?=?1,368.6 μg/kg). The high concentrations of PAHs found in Binhai New Area of Tianjin and Binzhou City are likely the result of rapid population and heavy industry growth, resulting in elevated point and nonpoint source inputs of PAHs. Of the samples collected, samples 1 and 10 (7.1 % of the total) were categorized as toxic since some of the PAH concentrations exceeded the corresponding PECs. Twenty samples were classified as nontoxic, with both the individual PAH and the∑PAH16 concentrations falling below the corresponding TECs. Analyses of selected PAH isomer ratios aided in the identification of PAH origins, allowing for a discrimination between pyrogenic and petrogenic sources. Spatial variability confirmed source heterogeneity within the study area. The most significant PAH-associated contamination was found in the Beitang River and Ji Canal, which are located in Binhai New Area. The magnitude of contamination and the likelihood of an ongoing influx of PAHs support the need for a better understanding of pollution sources and methods for both control and sediment restoration.  相似文献   

17.
A simple method – direct agar diffusion assay – was optimised for rapid assessment of heavy metal toxicity to marine chromogenic and non-chromogenic bacteria. The procedure involved spotting of a 10 microliter test solution on the seeded agar plate and incubation of the plates at 30°C to accelerate bacterial growth. Under optimum conditions, test results were obtainable within 12–18 hr instead of 96 hr incubation time generally required for a marine bacterial assay by conventional agar plate methods. A range of sixteen heavy metals, each at 5 different concentrations was tested. Toxicity was demonstrated by the formation of a clear zone of growth inhibition around the point of application. Toxicity of tested chemicals could be easily demonstrated at concentrations as low as 0.1 g per spot on the agar plate. A dose dependent relation between metal concentration (g/spot) and the diameter of the clear zone on agar plate was observed, suggesting potential of this method as an easy and economical tool in quantitative toxicology studies.  相似文献   

18.
Substantial amounts of NOx (146 000 t/y) and total hydrocarbons (294 000 t/y) are released to the marine atmosphere by the large number of oil and gas operations over Federal waters of the Gulf of Mexico (GOM). Under appropriate meteorological conditions these emissions react to form ozone (0–54 g/m3 over-water) which can affect the marine environment. Using a dry deposition model, this work examines the amount of ozone derived from oil and gas offshore operations and deposited in the sea surface of the Gulf of Mexico, and assesses its impact on the neuston of the sea-surface microlayer. Surface integrated estimates of ozone deposited from oil and gas operations over the sea surface ranges from 400 kg to 1800 kg which results in sea surface concentrations of 15 g/m3. This estimate and the actual toxic ozone levels suggest no acute, toxic impacts to the neuston. However, indirect effects may occur through changes to the pelagic foodwebs and organic carbon pathways. Another potential pathway for ozone impacting the environment is through the production of bromate. Based on the concentrations and time scales (11–139 days) only sublethal effects appear to occur, but uncertainties associated with this assessment need to be further studied. From an ecological perspective, the environmental impacts and risks of NOx and VOC discharges from offshore platforms need to be assessed for neuston and other components of the marine ecosystem.  相似文献   

19.
Heavy metal concentrations in Hylocomium splendens collected around a metal smelter in Latvia showed very high concentrations of Zn (>200 g/g), and elevated concentrations of Pb (38.3 g/g) and Cu (18.3 g/g). In an attempt to better evaluate the potential toxicity of the high Zn concentrations, a serial elution method was used to determine the concentrations of zinc in intercellular, extracellular exchangeable cell wall, intracellular, and particle fractions. The intercellular Zn concentrations represent the water soluble component of the total concentrations, and were low with no clear trends. Zn concentrations in the extra- and intracellular and particle fractions decreased exponentially from the pollutant source. Intracellular Zn concentrations in moss close to the emission source are within the range considered to be potentially toxic, from other single element exposure studies. The proportion of Zn in the relatively insoluble particle fraction, which is least associated with environmental risk, was greater closer to the pollution source, reaching > 30% in the oldest Hylocomium splendens segments.  相似文献   

20.
In comparative threat analysis, threats imposed by different environmental problems are measured and compared. This type of analysis can be used to assess the overall threat to the environment, and to identify the most serious threat (key problem) and areas which are particularly threatened (problem areas). Fundamental to comparative threat analysis is a common yardstick by which stresses imposed by different environmental problems can be compared. Such a yardstick may be the carrying capacity of the environment for environmental loads.In this paper we review how carrying capacity for different environmental problems is operationalized. Next, we discuss whether it is possible to compare threats, using the exceeding of carrying capacity as a yardstick. We point out problems and uncertainties in such a comparative threat analysis using three case studies: threats to European groundwater resources; threats to ecosystems in Europe; and threats to ecosystems, human health and groundwater resources in the Netherlands. On the basis of the results we advocate the application of risk assessment to enhance methodological uniformity in assessing protection levels for different environmental problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号