首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The occurrence of broad-host-range (BHR) plasmid amplicons belonging to incompatibility (Inc) groups IncA/C, IncN, IncP, and IncW in two wastewater treatment plant (WWTP) effluents and effluent-receiving streams in Northwest Arkansas, Mud Creek and Spring Creek, was determined. Community DNA captured on filter membranes and plasmid DNA extracted from antibiotic-resistant Escherichia coli isolated from Mud Creek was used for polymerase chain reaction at amplification of partial gene sequences specific to BHR plasmids. IncP plasmid amplicons were detected in effluent and downstream sites in both streams, while IncN and IncW plasmid amplicons were detected in Spring Creek in effluent and downstream but not upstream. IncA/C plasmid amplicons, in contrast, were detected at all sites, including upstream in most samples in Spring Creek and in one sample from Mud Creek. One IncP and two IncN were the only BHR plasmid amplicons found in 85 screened antibiotic-resistant E. coli isolates, and were detected only in isolates from effluent and downstream samples. Broad-host-range plasmids frequently carry antibiotic-resistance genes and can facilitate horizontal transfer of those genes. While BHR plasmids have been detected in WWTPs, WWTPs do not target these genetic elements for destruction. This study indicates that BHR plasmids are in WWTP effluent and are introducing BHR plasmids into streams. Additionally, species other than E. coli may be better targets as indicator bacteria for future studies of the impact of treated effluent on environmental dissemination of BHR plasmids.  相似文献   

2.
In the Ozark Highlands and across the United States, effluent phosphorus (P) sources often have a profound impact on water column concentrations and riverine transport. This study evaluated (i) annual P loads at the Illinois River at Arkansas Highway 59 from calendar year 1997 through 2008, (ii) the relative contribution of effluent P sources to annual riverine P transport, (iii) longitudinal gradients in water column P concentrations downstream from several wastewater treatment plant effluent discharges, and (iv) changes in monthly P loads over the last decade. This study showed that annual P loads have ranged from 64,000 kg to over 426,000 kg and that P transport was positively correlated to hydrology (i.e., the amount of water delivered downstream). The relative contribution of P inputs from municipal facilities has decreased from 40% of the annual P load at the Illinois River at Arkansas Highway 59 to < 15% in recent years. Elevated P concentrations during base flow conditions were traced 45 river km upstream to one municipal effluent discharge, but all effluent discharges influenced P concentrations in the receiving streams. Most important, flow-adjusted monthly P loads showed two distinct trends over time. Flow-adjusted loads significantly increased from 1997 through 2002 and significantly decreased from 2002 through 2008. The concentrations and transport of P within the Illinois River drainage area are significantly decreasing from all the watershed management changes that have occurred, and monitoring should continue to determine if this decrease continues at the same rate over the next several years.  相似文献   

3.
Abstract: Recent studies have detected estrogenic compounds in surface waters in North America and Europe. Furthermore, the presence of estrogenic compounds in surface waters has been attributed, in some cases, to the discharge of wastewater treatment plant (WWTP) effluent. The primary objective of the current study was to determine if WWTP effluent contributes estrogens to the surface waters of Nebraska. A second objective of this study was to determine if estrogens were found in concentrations sufficient enough to manifest feminizing effects on fish. These objectives were satisfied by deploying polar organic chemical integrative samplers (POCIS) and caged fathead minnows at eight field sites. Deployment sites included: three reference sites (Pawnee Creek, the Little Blue River, and the Middle Loup River), two sites upstream of the WWTPs at Grand Island and Columbus, and three sites downstream of the WWTPs at Grand Island, Columbus, and Hastings. Following the seven day deployments, POCIS extracts were analyzed for estrone, 17β‐estradiol, estriol and 17α‐ethinylestradiol using liquid chromatography tandem mass spectrometry (LC/MS/MS). 17β‐estradiol was detected in POCIS from six of the eight field sites with the greatest quantities recovered in POCIS deployed downstream from the Grand Island and Hastings WWTPs. Estrone was detected only in the POCIS deployed downstream from the Grand Island and Hastings WWTPs. Estrogenic effects were detected in caged minnows analyzed for the hepatic mRNA expression of two estrogen‐responsive genes, vitellogenin (vg1) and estrogen receptor α (ERα). Fish deployed at the site where the greatest quantities of estrogens were recovered (Hastings) had significantly higher expression of both vg1 and ERα than fish deployed at any of the other sites. These results confirm that WWTP effluent contributes biologically significant levels of estrogens to Nebraska surface waters.  相似文献   

4.
Abstract: Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8‐km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine‐disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 μg/l in 2005 and 2 μg/l in 2006. Most individual ECs were measured at concentrations less than 2 μg/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent studies have shown that fish respond to very low concentrations of ECs, and further study on the fate and transport of these contaminants in the aquatic environment is warranted.  相似文献   

5.
A five-year record of streamflow and chemical sampling data was evaluated to assess the effects of large-scale prairie restoration on transport of NO3-N, Cl, and SO4 loads from paired 5,000-ha watersheds located in Jasper County, Iowa. Water quality conditions monitored during land use conversion from row crop agriculture to native prairie in the Walnut Creek watershed were compared with a highly agricultural control watershed (Squaw Creek). Combining hydrograph separation with a load estimation program, baseflow and stormflow loads of NO3-N, Cl, and SO4 were estimated at upstream and downstream sites on Walnut Creek and a downstream site on Squaw Creek. Chemical export in both watersheds was found to occur primarily with baseflow, with baseflow transport greatest during the late summer and fall. Lower Walnut Creek watershed, which contained the restored prairie areas, exported less NO3-N and Cl compared with upper Walnut Creek and Squaw Creek watersheds. Average flow-weighted concentrations of NO3-N exceeded 10 mg/L in upper Walnut Creek and Squaw Creek, but were estimated to be 6.6 mg/L in lower Walnut Creek. Study results demonstrate the utility of partitioning loads into baseflow and stormflow components to identify sources of pollutant loading to streams.  相似文献   

6.
ABSTRACT: Limnological study of Duffin Creek was carried out with the objective of evaluating the impact of the proposed location of Century City. The chemical, biological and bacteriological parameters of one branch of the Creek, which received tertiary treated effluent, were found to be fairly high. Considering the flow conditions of the Creek in relation to the total discharge of the treated effluent from the proposed Century City, it was recommended that the effluent be piped 3–4 miles downstream. The plan for Century City has since been abandoned  相似文献   

7.
Abstract: For most wastewater discharges to streams, the effluent creates a plume that becomes less distinct as it mixes with the receiving water. Constant‐discharge tracer studies were used to characterize the plume or physical mixing zone (PMZ) at two similar transition terrain streams. At both sites, the laterally unmixed PMZs did not extend across the entire stream and mixing occurred relatively quickly. The observed plumes were significantly smaller than the regulatory mixing zone (RMZ) allowed by the State of Colorado. At Site 1 mixing occurred within a much shorter distance due to the presence of a riffle zone located a few meters downstream of the discharge point. Interpretation of field data with an analytical model suggests that the effective transverse dispersion coefficient (kz) for the riffle zone at Site 1 (~1 m2/s) was significantly higher than the average value over the longer nonriffle section at Site 2 (~0.01 m2/s). These results imply that to achieve the fastest mixing in transition terrain streams, thereby minimizing the size of the PMZ, discharge outfalls should be located upstream and close to riffle zones.  相似文献   

8.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

9.
The biodiversity of many Brazilian rivers is seriously threatened by industrial and municipal pollution, and Rio Paraiba do Sul, located between two major industrial centers is one example of this situation. A survey of the fish assemblage was conducted from October 1998 to September 1999 and the data were used to develop an index of biotic integrity (IBI). We sampled three zones in bracketing a large urban–industrial complex to evaluate water quality changes and the usefulness of the IBI as a monitoring tool. Water quality was classified as poor upstream of the effluent discharges, very poor near the discharges, and poor–fair downstream of the discharges, with this latter situation revealing the current biological capacity of the river. Physical and chemical habitat characteristics were also measured at each site to construct an independent environmental index to validate the IBI. The habitat and IBI indices were highly correlated, suggesting this IBI would be applicable to other large rivers in southeast Brazil.  相似文献   

10.
Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P?=?0.0214) and upstream (P?=?0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P?=?0.0222) and marginally less in downstream locations (P?=?0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.  相似文献   

11.
A study of two small streams at Akumadan and Tono, Ghana, was undertaken during the rain and dry season periods between February 2005 and January 2006 to investigate the impact of vegetable field runoff on their quality. In each stream we compared the concentration of current-use pesticides in one site immediately upstream of a vegetable field with a second site immediately downstream. Only trace concentrations of endosulfan and chlorpyrifos were detected at both sites in both streams in the dry season. In the wet season, rain-induced runoff transported pesticides into downstream stretches of the streams. Average peak levels in the streams themselves were 0.07 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Akumadan stream); 0.04 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Tono stream). Respective average pesticide levels associated with streambed sediment were 1.34 and 0.32 microg kg(-1) (the Akumadan stream), and 0.92 and 0.84 microg kg(-1) (the Tono stream). Further investigations are needed to establish the potential endosulfan and chlorpyrifos effects on aquatic invertebrate and fish in these streams. Meanwhile measures should be undertaken to reduce the input of these chemicals via runoff.  相似文献   

12.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

13.
Abstract: Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater‐treatment‐plant effluent, have been well documented, but other sources, particularly wet‐weather discharges from combined‐sewer‐overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater‐treatment‐plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP‐effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10‐100 μg/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 μg/l, and urban stream‐stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP‐effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2‐butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 μg/l) because CSO effluent is untreated, and were higher in urban‐stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near‐surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay.  相似文献   

14.
Abstract: Fecal coliform (FC) bacteria in coastal waters impair the use of these waters for shellfish harvesting and recreation. This study was designed to quantify and compare FC levels and export in two coastal watersheds with different land uses. Continuous monitoring of rainfall and discharge at three sites in the Jumping Run Creek watershed and one site in the Pettiford Creek watershed were conducted during a 4.5‐year period. Primary land use in the drainage area of one of the three Jumping Run Creek sites is low density industrial, while the other two are residential. Land use in the Pettiford Creek watershed is managed national forest. Nonstorm or base‐flow grab and flow‐proportional storm‐event samples were collected and analyzed for turbidity, conductivity, suspended sediment, nitrogen, phosphorus, and FC. Geometric mean FC levels for the Jumping Run Creek monitoring sites ranged from 593 to 2,096 mpn/100 ml, while the mean level at the Pettiford Creek site was 191 mpn/100 ml. Levels of most other parameters were greater in storm discharge from the Jumping Run Creek sites as compared to Pettiford Creek indicating that pollutant export from a watershed increases with development. Statistical analysis of the monitoring data suggested that FC levels in stormwater samples consistently increased with storm rainfall, but were not consistently correlated with any other parameter, including total suspended solids. Multivariate analysis indicated that the weekly FC export for each of the four sites was lowest during the December‐February quarter. Export was highest during the spring and summer at the Jumping Run Creek sites, while for the Pettiford Creek site, FC export was highest during September‐November. The cause of the seasonal variability was unknown but was thought to be associated with human activity in the watersheds.  相似文献   

15.
/ Lapwai Creek, an agriculturally impacted stream in northern Idaho, was sampled seasonally over a two-year period to determine if macroinvertebrate community composition changed along the longitudinal gradient and if changes followed predictions of the river continuum concept. Possible relationships between changes in food resource availability and community structure were also examined. Benthic invertebrates were collected at eight locations along the longitudinal gradient of Lapwai Creek using a Hess sampler. Random skewer analysis suggested there was no longitudinal gradient for either number of individuals or functional feeding group composition. Cluster analysis revealed that all locations, excluding a site receiving outflow from a small, eutrophic reservoir, had a similar community structure, further suggesting that invertebrate community composition remained consistent along the longitudinal gradient of the stream. The community was dominated at all sites, excluding the site below the reservoir, by functionalgrazers. Shredders were rare throughout Lapwai Creek, even in areas where healthy riparian vegetation still remained. Studies of other streams within the drainage basin show that many species found in the upper reaches of these streams, where agricultural impacts are low, were absent throughout the length of Lapwai Creek. Data collected concurrently with macroinvertebrates indicated that the input, storage, and transport of particulate organic matter was low throughout the stream, whereas periphyton abundance was high. The absence of longitudinal changes, despite flowing through three distinct geomorphological regions, and the grouping of all sites except one by cluster analysis for both dominant taxa and functional feeding groups suggest that agricultural alteration has influenced community structure of Lapwai Creek, resulting in a relatively homogeneous assemblage of macroinvertebrates capable of tolerating agricultural nonpoint source pollution. Additional support for this hypothesis is the high abundance of one food source, periphyton, and the small quantities of terrestrially derived organic matter. The abundance of the former and the rarity of the latter can be attributed to alteration of the drainage basin resulting from agricultural activities through inputs of fertilizers that generated high nutrient concentrations and the removal of riparian vegetation to clear more land for agriculture and provide increase access to the stream.KEY WORDS: Agriculture; Longitudinal patterns; Macroinvertebrates; Nonpoint source; River continuum  相似文献   

16.
Estrogenic activity of regional water samples was evaluated. Samples obtained from wetlands and ponds involved in various agricultural land uses, from three river sites over four seasons, and from municipal wastewater effluent held in storage lagoons were evaluated. The estrogen-responsive cell line MCF-7 BOS was used in the E-screen assay to determine 17beta-estradiol equivalents (E2 Eq) of water samples extracted by solid-phase extraction. Estrogenic activity in surrounding wetlands and ponds from different land uses was not different, with 10(-12) M E2 Eq (0.3 ppt). Estrogenic activity of Red River samples was within the same range as wetland-pond samples. The highest activity was found downstream from municipal wastewater treatment effluent discharge sites, in winter when river flow was lowest (approximately 6 x 10(-13) M E2 Eq). Results showed that 7 of 20 wetland-pond samples and 5 of 12 river samples were below the limits of quantitation (approximately 3 x 10(-14) M E2 Eq). Toxicity was found in fall and summer river samples upstream from municipal wastewater release sites. The timing of toxicity did not coincide to the presence of elevated fecal coliforms. Estrogenic activity in wastewater effluent from lagoons decreased over time (approximately 25 to 5 x 10(-13) M E2 Eq) with an apparent half-life of 8 d for one lagoon. The median concentration of detectable estrogenic activity in regional water samples was approximately 50-fold less than the median 17beta-estradiol concentration of estradiol detected in some U.S. streams in previous studies.  相似文献   

17.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

18.
We present four reconstruction estimates of Arkansas River baseflow and streamflow using a total of 78 tree-ring chronologies for three streamflow gages, geographically spanning the headwaters in Colorado to near the confluence of the Arkansas-Mississippi rivers. The estimates represent different seasonal windows, which are dictated by the shared limiting forcing of precipitation on seasonal tree growth and soil moisture—and subsequently on the variability of Arkansas River discharge. Flow extremes that were higher and lower than what has been observed in the instrumental era are recorded in each of the four reconstructions. Years of concurrent, cross-basin (all sites) low flow appear more frequently during the 20th and 21st Centuries compared to any period since 1600 A.D., however, no significant trend in cross-basin low flow is observed. As the most downstream major tributary of the Mississippi River, the Arkansas River directly influences flood risk in the Lower Mississippi River Valley. Estimates of extreme high flow in downstream reconstructions coincide with specific years of historic flooding documented in New Orleans, Louisiana, just upstream of the Mississippi River Delta. By deduction, Mississippi River flooding in years of low Arkansas River flow imply exceptional flooding contributions from the Upper Mississippi River catchments.  相似文献   

19.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

20.
Impacts of sediments and heavy metals on the biota of streams in the copper-mining district of southwestern Montana were examined by comparing aquatic communities of impacted streams with those of control streams. Control streams were chosen through the use of a technique that identifies similar streams based on similarities in their watershed characteristics. Significant differences between impacted and control sites existed for surface substrate, riparian vegetation, and the number of macroinvertebrate taxa. These results revealed that: (a) chemical and physical habitats at the impacted sites were disrupted, (b) the presence of trout was an inadequate measure of ecological integrity for these sites, and (c) watershed classification based on a combination of mapped terrestrial characteristics provided a reasonable method to select control sites where potential control sites upstream and downstream were unsuitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号