首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The caterpillars of Eucheira socialis westwoodi cooperatively spin and maintain a hollow silken nest and an elaborate network of silken foraging trails on their host plant, madrone (Arbutus spp.: Ericaceae). Nests typically contain several hundred larvae. Two populations are known to harbor a sex ratio distorter. The primary sex ratio in these two populations for four generations has been exceedingly male biased (64–79% male). Lepidoptera larvae are easily sexed using external morphology, allowing us to uniquely mark male and female larvae and to assemble larval groups of particular sex ratios. We report here the results of experiments on sex-specific larval behavior and physiology and the effect of colony sex ratio on individual behavior. We found that male larvae spent more time spinning silk on the nest and less time feeding than female larvae. Males were the first to emerge from the nest and the first to venture out along trails to feed. Male-biased nests had a significantly greater amount of silk deposited on their surfaces than female-biased nests. In the field, male-biased nests produced heavier male and female pupae than female-biased nests. Male and female larvae in 75% male nests became active earlier than males and females in other sex ratio treatments. Received: 11 September 1998 / Received in revised form: 24 February 1999 / Accepted: 27 March 1999  相似文献   

2.
We investigated sex allocation in a central European population of the facultatively polygynous ant Leptothorax acervorum. The population-wide sex ratio was found to be quite balanced, with a proportional investment in female sexuals of 0.49. Sex allocation varied considerably between colonies, resulting in split sex ratios. The productivity of colonies was negatively correlated with queen number and positively with colony size. In contrast, the sex ratio (proportional investment in female sexuals) was neither correlated with queen number, colony size, nor total sexual production, but with worker relatedness. The uncoupling of the genetic colony structure and queen number presumably results from frequent queen turnover and colony splitting.  相似文献   

3.
The study of the male and female karyotypes of the polychaete Dinophilus gyrociliatus was performed with the aim of ascertaining the diploid number of chromosomes and confirming the existence of karyological differences between the two sexes. Our results evidenced that the female karyotype of D. gyrociliatus consists of 2n=24 chromosomes, while the male karyotype has 2n=23 chromosomes. X chromosomes are subtelocentric and much bigger than the autosomes. The size of the D. gyrociliatus chromosomes, which in the female embryos vary in length from little more than 2.8 wm to less than 0.7 wm, are relatively small by comparison with those of other polychaetes. The existence of maternal and environmental factors able to influence the sex ratio of D. gyrociliatus and chromosomal differences between the sexes confirms that: (1) sex determination is chromosomal and syngamic of the XX-X0 type and (2) control of the sex ratio is progamic and depends on genetic and environmental factors.  相似文献   

4.
We determined the sex, order, and clutch size of eggs laid by the parasitoid wasp, Trichogramma pretiosum Riley, in the eggs of one of its natural hosts, Trichoplusia ni (Hübner). The parasitoid allocated sex non-randomly to hosts in the laboratory with a variance significantly less than that of a binomial (random) distribution, our null model. More clutches of two or more eggs contained a single male egg as the second or third egg laid than would be expected by chance and none contained two or more male eggs. T. pretiosum also increased the sex ratio (% male) of its offspring with increasing foundress numbers by increasing the frequency of male offspring as the second egg in a two-egg clutch allocated to unparasitized hosts and as the single egg allocated to previously parasitized hosts. These results indicate that T. pretiosum allocates the sex of its offspring precisely. Precise sex allocation is favored under local mate competition because it reduces variation in the number of sons per patch thus maximizing the number of inseminated daughters emigrating from the patch. Similar combinations of female and male offspring emerged from T. ni eggs parasitized by T. pretiosum in the field, again with a sex ratio variance less than that expected for a binomial distribution. These results strongly suggest that this parasitoid species manifests local mate competition.  相似文献   

5.
Despite numerous hypotheses proposed for the function of duets, there is currently no consensus as to why males and females should coordinate their songs in such a precise way. There is evidence indicating that duets sometimes serve in territory defence, but additional functions are rarely considered. The mate-defence hypothesis proposes that birds sing in response to their partner's song and the resulting duet repels rivals and may prevent desertion of a partner. We investigated this idea in the subdesert mesite Monias benschi using playback experiments in which we broadcast recordings of solos and duets to single birds and groups. Two predictions of the hypothesis were met: (1) the solo songs of both sexes incited aggressive responses from paired birds of the same sex; and (2) compared to solo songs, pair duets elicited weaker responses from groups and duetting pairs. However, groups responded to male duets with a vigour equal to that with which they responded to male solos. This indicated that the weaker responses of groups to pair duets compared to male solos was a function of the sex rather than number of vocalising birds. Groups responded more strongly to male solos than to either female solos or pair duets, and females' responses were generally weaker than those of males. This may reflect stronger competition among males for mates, due to a male-biased sex ratio in the population. We conclude that song serves similar functions in each sex and that duets may arise through mutual mate defence.  相似文献   

6.
The occurrence and genetic effects of polyandry were studied in the ant Proformica longiseta using three microsatellite markers. The average queen mating frequency (QMF) estimated from the sperm dissected from the spermathecae of 61 queens was 2.4 with 69% of the queens being multiply mated. QMF estimated from worker offspring in a subsample of eight monogynous colonies was 3.5, but the effective paternity (me,p) was only 1.23. The difference between these values reflected unequal sperm use by the queens. Most colonies of P. longiseta were polygynous and the average relatedness among workers was 0.35. Polyandry thus added only marginally to the genetic diversity of colonies, and our results gave little support to the genetic-variability hypothesis for explaining polyandry. Diploid male load was low, as only 1% of males were diploid. A large majority (92%) of nests produced one sex only, with males produced in colonies that had higher than average worker relatedness. This contradicted the predictions derived from worker control of sex ratios. Males produced enough sperm to fill the spermathecae of several queens. Thus, the results indicated that diploid male load, sperm limitation and sex ratio conflict are also unlikely explanations of polyandry. Plausible hypotheses for polyandry include mating by convenience, as the sex ratio is male biased and the mating costs to a female can be low because the females are wingless and have no mating flight. The observed unequal sperm use furthermore points to sperm choice and sperm competition as important factors in the evolution of polyandry.  相似文献   

7.
Social Hymenoptera are general models for the study of parent-offspring conflict over sex ratio, because queens and workers frequently have different reproductive optima. The ant Pheidole pallidula shows a split distribution of sex ratios with most of the colonies producing reproductives of a single sex. Sex ratio specialization is tightly associated with the breeding system, with single-queen (monogynous) colonies producing male-biased brood and multiple-queen (polygynous) colonies female-biased brood. Here, we show that this sex specialization is primarily determined by the queens influence over colony sex ratio. Queens from monogynous colonies produce a significantly more male-biased primary sex ratio than queens from polygynous colonies. Moreover, queens from monogynous colonies produce a significantly lower proportion of diploid eggs that develop into queens and this is associated with lower rate of juvenile hormone (JH) production compared to queens from polygynous colonies. These results indicate that queens regulate colony sex ratio in two complementary ways: by determining the proportion of female eggs laid and by hormonally biasing the development of female eggs into either a worker or reproductive form. This is the first time that such a dual system of queen influence over colony sex ratio is identified in an ant.  相似文献   

8.
Sex allocation theory predicts that if variance in reproductive success differs between the sexes, females who are able to produce high-quality young should bias offspring sex ratio towards the sex with the higher potential reproductive success. We tested the hypothesis that high-quality (i.e., heavy) female eastern kingbirds (Tyrannus tyrannus) that bred early in the breeding season would produce male-biased clutches. A significant opportunity for sexual selection also exists in this socially monogamous but cryptically polygamous species, and we predicted that successful extra-pair (EP) sires would be associated with an excess of male offspring. Although population brood sex ratio did not differ from parity, it increased significantly with female body mass and declined with female breeding date, but was independent of the morphology and display (song) behavior (correlates of reproductive success) of social males and EP sires. Male offspring were significantly heavier than female offspring at fledging. Moreover, the probability that male offspring were resighted in subsequent years declined with breeding date, and was greater in replacement clutches, but lower when clutch size was large. Probability of resighting female offspring varied annually, but was independent of all other variables. Given that variance in reproductive success of male kingbirds is much greater than that of females, and that male offspring are more expensive to produce and have a higher probability of recruitment if fledged early in the season, our results support predictions of sex allocation theory: high-quality (heavy) females breeding when conditions were optimal for male recruitment produced an excess of sons.  相似文献   

9.
Theory suggests that maternal effects are especially important in organisms with environmentally-sensitive sex-determining mechanisms. However, there is no substantive body of empirical evidence to confirm this conjecture. We integrated field and laboratory studies to jointly evaluate the significance of behavioral (nest-site choice) and physiological (yolk hormone allocation) maternal effects on offspring sex ratio in the common snapping turtle (Chelydra serpentina), a species with temperature-dependent sex determination (TSD). Of the 16 microhabitat variables measured, only three (south, east, and total overstory vegetation cover) were significantly correlated with nest temperature: cooler nests were located under more vegetation cover. In turn, these microhabitat predictors of nest temperature, and nest temperature itself, may influence nest sex ratio: shadier, cooler nests were more likely to produce a higher proportion of male offspring than less shady, warmer nests. Analysis of eggs from these same nests incubated in a common garden design in the laboratory revealed that clutch sex ratio was unaffected by levels of yolk estradiol, yolk testosterone, or their interaction. Examination of both behavioral and physiological maternal effects revealed no concordant impact on offspring sex ratio. However, eggs from nests that produced male-biased sex ratios in the field yielded higher proportions of males under constant-temperature conditions in the laboratory. Our study confirms the importance of behavioral maternal effects in nature on offspring sex ratios in species with TSD, while also revealing the potential presence of a predisposition for sex-ratio production underlying TSD in this system.Communicated by S. Krackow  相似文献   

10.
The operational sex ratio (OSR) may influence the intensity of competition for mates and mate choice and is therefore thought to be a major factor predicting the intensity and direction of sexual selection. We studied the opportunity for sexual selection, i.e., the variance in male reproductive success and the direction and intensity of sexual selection on male body mass in bank vole (Clethrionomys glareolus) enclosure populations with experimentally manipulated sex ratios. The opportunity for sexual selection was high among male-biased OSRs and decreased towards female-biased OSRs. Paradoxically, selection for large male body mass was strongest in female-biased OSRs and also considerable at intermediate OSRs, whereas at male-biased OSRs, only a weak relationship between male size and reproductive success was found. Litters in male-biased OSRs were more likely to be sired by multiple males than litters in female-biased OSRs. Our results suggest that the intensity and direction of sexual selection in males differs among different OSRs. Although the direction of sexual selection on male body mass was opposite than predicted, large body mass can be favored by sexual selection. Naturally varying OSRs may therefore contribute to maintain variation in male sexually selected traits.  相似文献   

11.
In laboratory and field studies of the walnut fly, Rhagoletis juglandis Cresson (Diptera: Tephritidae), we assessed the effect of operational sex ratio on copulation duration and partitioned the sex ratio effect into component effects due to male density and female density. In our first laboratory experiment, results were clearly consistent with theoretical expectation: increases in male density were associated with significant increases in copulation duration while increases in female density were associated with significant decreases in copulation duration. These component effects yielded a striking composite effect of operational sex ratio (OSR) on copulation duration in which male-biased ratios were associated with low frequencies of short copulations and female-biased ratios were associated with high frequencies of short copulations. Consistent with a priori expectations concerning costs of territorial behavior, the effect of male density on copulation duration was stronger than that of female density. There was no significant interaction between the effects of gender density on copulation duration: each gender density contributed additively to the composite OSR effect on copulation duration. In contrast to the effect of OSR, overall density had little effect. Field data corroborated these findings fully and showed additionally that OSR in the vicinity of fruit tended in nature to be male-biased. In a second laboratory experiment, we measured copulation duration for individuals exposed alternately to male-biased and female-biased ratios. Individual flies consistently copulated for longer in male-biased environments than in female-biased ones. We propose that this plasticity permits individuals to track changes in local sex ratio over space and time and respond appropriately. Received: 15 November 1995/Accepted after revision: 27 April 1996  相似文献   

12.
K. Cole 《Marine Biology》2002,140(1):151-163
Gonad morphology and colony composition support the existing supposition that the obligate coral-dwelling damselfish Dascyllus aruanus has a protogynous hermaphroditic sexual pattern. Adults had either an active ovary containing vitellogenic oocytes, an ovotestis, or a spermiated testis and were classified as adult female, hermaphrodite, or adult male, respectively. Among individuals having male function, the testis (or testis portion of the ovotestis) takes the form of an unrestricted spermatogonial lobular testis. Among hermaphrodites having an ovotestis, a small proportion of individuals had a gonad in which both the ovarian and testicular portions were inactive (inactive hermaphrodites), whereas the majority had a predominantly testicular ovotestis that contained spermatozoa (male-active hermaphrodites). The size range of individuals within gonadal classes indicates that all D. aruanus first develop an ovariform gonad. Some individuals then undergo ovarian maturation to become adult females while others develop testicular tissue to form an ovotestis and become male-active hermaphrodites. Subsequently, progressive loss of ovarian tissue results in the development of a secondary testis from an ovotestis with the retention of a residual, afunctional lumen among adult males. The wide size range of individuals having an ovotestis suggests that some hermaphrodites function as adult females before developing testicular tissue while other individuals do not pass through an adult female stage. If this is the case, D. aruanus exhibits a diandric protogynous hermaphroditic sexual pattern. The apparent prolonged retention of an ovotestis with both healthy oocytes and an ovarian-type lumen in a spermiated ovotestis, as well as a functional sex ratio of 1:1 for adult females:adult males plus male-active hermaphrodites also raises the possibility that D. aruanus may be capable of bidirectional sex change during the hermaphroditic stage. Such a capability would be highly adaptive for a species having limited mobility and unpredictable recruitment of new colony members resulting in unpredictable mating opportunities.  相似文献   

13.
We examine the role of food resources on split sex ratios in Formica exsecta. Models of resource-based sex allocation predict that greater resources will cause an increase in the production of reproductive females (gynes) and an increase in overall size of offspring. We experimentally increased food resources for a subset of colonies in a polygynous population with a very male-biased sex ratio. This increase in food availability caused colonies that were male specialists the prior year to switch to female production. Overall, a significantly greater proportion of food-supplemented colonies produced gynes, compared to control colonies. Moreover, food-supplemented colonies produced significantly larger workers and males (but not gynes), compared to those produced by control colonies. There was, however, no significant difference in the numerical productivity of food-supplemented and control colonies. We also measured the natural association between colony sex specialization and proximity to conifers, which typically harbor honeydew-bearing aphids (an important natural food source). In line with the view that resources play an important role for determining sex ratios in social insects, we found that female-producing colonies were significantly closer to conifers than were male-producing colonies.  相似文献   

14.
An individual’s decision to disperse from the natal habitat can affect its future fitness prospects. Especially in species with sex-biased dispersal, we expect the cost–benefit balance for dispersal to vary according to the social environment (e.g., local sex ratio and density). However, little is known about the social factors affecting dispersal decisions and about the temporal and spatial patterns of the dispersal process. In our study, we investigated experimentally the effects of the social environment on post-fledging dispersal of juvenile great tits by simultaneously manipulating the density and sex ratio of fledglings within forest plots. We expected young females in the post-fledging period mainly to compete for resources related to food and, as they are subordinate to males, we predicted higher female dispersal from male-biased plots. Juvenile males compete for vacant territories already in late summer and autumn; thus, we predicted increased male dispersal from high density and male-biased plots. We found that juvenile females had a higher probability to leave male-biased plots and had dispersed further from male-biased plots in the later post-fledging phase when juvenile males start to become territorial and more aggressive. Juvenile males were least likely to leave male-biased plots and had smallest dispersal distances from female-biased plots early after fledging. The results suggest that the social environment differentially affected the costs and benefits of philopatry for male and female juveniles. The local sex ratio of individuals is thus an important social trait to be considered for understanding sex-specific dispersal processes.  相似文献   

15.
Socioecological theory predicts that the distribution of fertile females in space and time is the major determinant of male spacing behavior and mating strategies. Using a small nocturnal Malagasy primate, the gray mouse lemur (Microcebus murinus), we determined the spatiotemporal distribution of estrous females during the brief annual mating season to examine the predictive power of the socioecological model for male mating strategies. Mouse lemurs are particularly interesting in this respect because this polygynous species is characterized by seasonal reproduction, seasonally reversed sexual dimorphism, and relatively large testes. All resident animals in our 8-ha study area, a total of 30 adult males and 27 adult females, were individually marked and regularly recaptured to determine female reproductive status and to obtain home range data. We found that the mating season is limited to 4 weeks following female emergence from hibernation. Only 3-9 females could have synchronized estruses during a given week, indicating a moderately high male monopolization potential. However, receptive females were not spatially clumped and male ranges overlapped with those of many other rivals. Therefore, we suggest that individual powerful males may be unable to defend exclusive permanent access to receptive females because of prohibitive costs of range defense resulting from the strongly male-biased operational sex ratio and the corresponding intruder pressure. Our general conclusions are (1) that the socioecological model provides a useful heuristic framework for the study of mating systems, but that (2) it does not specify the degree of spatiotemporal clumping of receptive females at which male mating strategies switch among mate guarding, spatial exclusion of rivals, and roaming, and that (3) the operational sex ratio can have profound effects on male mating strategies as well.  相似文献   

16.
The ant Hypoponera opacior exhibits alternative reproductive morphs of males and females associated with distinct sexual behaviours. Our long-term study reports strong seasonality in sexual production with a mating season in early and one in late summer. Winged (alate) reproductives emerge in June, swarm during the monsoon season and establish new colonies independently. In contrast, wingless worker-like (ergatoid) reproductives that appear in late August mate within their natal or adjacent nests and either do not disperse or establish new nests close by. These divergent dispersal patterns allowed us to analyse the impact of local factors on investment strategies by comparing sex allocation between and within the two reproductive events. The optimal sex ratio for ergatoid reproductives should be influenced both by competition for matings between brothers (local mate competition) and rivalry among young locally dispersing queens for workers, nest sites or food (local resource competition). The greater importance of local resource competition was demonstrated both by a male-biased sex ratio for wingless sexuals and a stronger increase in the number of males with total sexual production than for the number of queens. Microsatellite analysis revealed that inter-nest variation in relatedness asymmetry cannot explain split sex ratios in the August generation. Instead, nests with related ergatoid males raised a male-biased sex ratio contrary to the expectations under local mate competition. In conclusion, male bias in wingless H. opacior indicates that local mate competition is less strong than local resource competition among ergatoid queens over the help of workers during nest foundation.  相似文献   

17.
Conflicts of interest among genetically heterogeneous nestmates in social insect colonies have been emphasized as driving colony resource allocation. However, potential intracolonial conflicts may not actually be realized so that resource allocation could be shaped primarily by among-colony selection that maximizes colony productivity. To elucidate the causal basis of patterns of resource allocation, I experimentally manipulated three fundamental aspects of colony social structure (relatedness among workers, relatedness among larvae, and queen presence) in the ant Temnothorax curvispinosus and measured effects on colony resource allocation to new workers, gynes, and males. The experimental manipulations had widespread effects on patterns of colony resource allocation, but there was little evidence for realized conflicts over the sex ratio and caste ratio. Decreasing nestmate relatedness caused decreased colony productivity, suggesting that more closely related nestmates have more favorably interacting phenotypes. Together, these results suggest that resource allocation in T. curvispinosus may be shaped more by among-colony selection than intracolonial conflict, leading to queen–worker–brood coadaptation.  相似文献   

18.
R. Bishop  J. Torres 《Marine Biology》2001,138(6):1093-1098
The principles of energetics were used to examine the energetic requirements of leptocephali. Respiration and excretion rates and daily growth rates combined with proximate composition were used to examine the allocation of energy into each of the three main components of energetics: metabolism, excretion and growth. The daily energetic requirements for leptocephali, referred to as type 2 larvae based upon their unique developmental strategy, were compared to the requirements of non-leptocephalus larvae, known as type 1. Leptocephalus daily energetic requirements were also compared to the energy available from the leptocephalus' proposed food sources. The four species of eel larvae selected were all from the order Anguilliformes: Paraconger caudilimbatus (Poey), Ariosoma balearicum (Delaroche), Gymnothorax saxicola Jordan and Davis, and Ophichthus gomesii (Castelnau). The allocation of energy to each of the components of energetics as well as the total energetic requirements for the leptocephali proved to be very different from those of type 1 larvae. Metabolism received the majority, 60-92%, of the energy required per day. Growth and excretion were allocated 4-39% and <1-21%, respectively, of the total energy needed per day. Leptocephali required <50% of the energy needed by type 1 larvae of equal dry mass. The unique growth strategy used by leptocephali allows them to increase rapidly in size while allocating the majority of their energy, not to growth as in most larval fish, but to metabolism.  相似文献   

19.
Previous studies have shown that colony social organization in Solenopsis invicta is under strong genetic control. Colonies containing some proportion of workers with the Bb or bb genotypes at the gene Gp-9 display polygyne social organization (multiple reproductive queens per colony), whereas colonies with only BB workers express monogyne organization (single reproductive queen per colony). The hypothesis that the presence of workers bearing the b allele confers the polygyne social phenotype on a colony leads to the prediction that social organization can be manipulated by experimentally altering frequencies of adult workers bearing this allele. We did this by replacing queens in colonies of each social form with single queens of the alternate form, which differ in Gp-9 genotype. As worker Gp-9 genotype compositions changed, experimental colonies switched to the alternate social organization. These switches occurred when frequencies of workers with the b allele passed an identifiable threshold, such that colonies with fewer than 5% such workers behaved like monogyne colonies and those with more than 10% behaved like polygyne colonies. Our data thus confirm the prediction that colony social organization in this ant can be altered by manipulating adult worker genotype compositions, and thereby support the hypothesis that the expression of polygyny requires the presence of adult workers bearing the b allele at Gp-9.  相似文献   

20.
Competition among males to mate is generally associated with male-biased size dimorphism. In this study we examine mating behavior in the northern water snake (Nerodia sipedon), a species in which males are much smaller than females despite substantial competition among males to mate. Competition among males was a consequence of a male-biased operational sex ratio due to slightly higher female mortality from a birth sex ratio of 1 : 1, and, in 1 year, more synchronous and longer mating activity by males. Approximately one-third of both males and females appeared not to mate in a given year. Larger males were generally more likely to attempt mating, but size did not explain the variance in the number of aggregations in which individual males participated. Within aggregations, males that were successful at achieving intromission were larger than unsuccessful males in 1 of 2 years. Variation in condition (mass relative to length) and relative tail length were not generally useful predictors of either mating effort or success in males. Because large size was often advantageous to males, sexual size dimorphism appeared not to be a consequence of sexual selection favoring smaller males. Because sexual dimorphism was evident at birth, and both males and females matured sexually at about 4 years, sexual dimorphism was not simply a consequence of one sex growing at the maximum rate for longer. Female fecundity increased with size, and sex differences in size-fecundity relations may underly the pattern of sexual size dimorphism. However, because multiple mating by females is common, sperm competition is likely to be important in determining male reproductive success. Therefore, allocation of energy to sperm rather than growth may also prove to be an important influence on male growth rates and sexual size dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号