首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
合成塑料的生物降解性及其检测   总被引:1,自引:0,他引:1  
辛世崇  赵延斌 《化工环保》1991,11(3):162-165
本文介绍了合成塑料的生物降解性、降解取决因素、微生物所起分解作用的形式、降解机理以及国内外多种常用的和改良的检测其生物降解性的方法,并指出对可生物降解性合成塑料的开发是解决废塑料物品在环境中累积的有效手段。  相似文献   

2.
本文综述了国内外关于有机污染物和有机化工废水的生物毒性与生物降解性方面的某些研究成果和发展趋势,并讨论了测定和评价生物毒性的方法,提出了一些有关生物降解性的看法。  相似文献   

3.
生物降解润滑脂的研究   总被引:1,自引:0,他引:1  
姚智勤 《化工环保》2004,24(Z1):66-69
进行了生物降解润滑脂的试验探索.用国产植物油作为基础油,单锂皂作为稠化剂,添加适量抗氧剂制成了生物降解润滑脂.实验室性能评价表明,该润滑脂除具有良好的氧化安定性、防锈性、胶体安定性等性能外,还具有优良的生物降解性能.  相似文献   

4.
徐向阳 《化工环保》1991,11(2):86-91
根据有关文献,对难生物降解有机污染物的厌氧降解性、国外化工废水厌氧处理,以及化工废水厌氧处理毒性问题作了综述。  相似文献   

5.
采用振荡培养实验和活性污泥模拟实验对大豆油乙氧基化合物(SOE)进行了生物降解研究。实验结果表明,振荡培养实验中SOE的初级生物降解度随平均环氧乙烷加成数的增多而略有下降,且SOE-4,SOE-10,SOE-20的初级生物降解度在第6天时分别为97.3%,91.1%,89.4%;活性污泥模拟实验中SOE的初级生物降解度随平均环氧乙烷加成数的增多而增加,且SOE-4,SOE-10,SOE-20的初级生物降解度在第8天时分别为29.0%,81.2%,100.0%。用激光粒度仪测量SOE水合物在不同静置时间时的粒径分布及分散度结果表明,随静置时间的延长,平均环氧乙烷加成数少的SOE水合物粒径逐渐增大,且分散性或水溶性变差,易产生团聚导致初级生物降解度降低。对水溶性或分散性较差的表面活性剂,建议以振荡培养实验研究其生物降解性较为恰当。  相似文献   

6.
腈纶、丙烯腈生产废水生化处理工艺   总被引:3,自引:0,他引:3  
杜龙弟  洪梅  朱建华  王薇  尤丽梅 《化工环保》2004,24(Z1):218-220
测定了腈纶、丙烯腈生产所排出的各股废水的可生物降解性,考察了共基质、酸化水解以及A/O/O工艺处理腈纶、丙烯腈混合废水的效果.  相似文献   

7.
新兴污染物BP-3和BP-4的好氧生物降解性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧洲经济合作与发展组织(OECD)的生物降解测试标准方法——301F测压呼吸计量法,考察了2-羟基-4-甲氧基二苯甲酮(BP-3)和2-羟基-4-甲氧基二苯甲酮-5-磺酸(BP-4)的好氧生物降解性能,并研究了降解动力学及共代谢现象。实验结果表明:BP-3和BP-4的可生物降解率分别为68.36%和41.34%;根据OECD快速降解性判定标准,BP-3划归为易快速降解物质,而BP-4为不易快速降解物质;两种物质的生物降解可用一级动力学描述,半衰期分别为1.986 d和2.806 d;根据欧盟法规《化学品的注册、评估、授权和限制》(REACH法规),BP-3和BP-4均非持久性物质;与苯甲酸钠共存时,BP-3和BP-4的降解过程均表现出共代谢现象。  相似文献   

8.
氰化钠泄漏污染调查及治理方案技术分析   总被引:1,自引:0,他引:1  
赵吉昌  高克权 《化工环保》2004,24(5):355-357
对洛阳市洛宁县“11.1”NaCN泄漏污染吉家洼金矿下游麦张沟河道土壤CN^-残存量进行了布点、采样、化验;对提出的CN^-残存量治理方案,从CN^-的可氧化性、挥发性及生物降解性进行论述;对CN^-的挥发衰减做了模拟试验,结果令人满意。  相似文献   

9.
有机磷农药生产废水处理方法的研究与进展 (上)   总被引:3,自引:0,他引:3  
侯纪蓉 《化工环保》1990,10(4):203-207
本文概括地介绍了近10年来国内有机磷农药废水治理方法研究工作的进展情况。介绍了磷酸酯、硫代磷酸酯与二硫代磷酸酯类农药废水在活性炭吸附、水解、氧化与生物降解中的差异。认为生化法是处理有机磷农药废水的重要方法,废水生化处理的难易,主要取决于有机碳与硫含量的比例,通过预处理除去其中的有机硫,或调整废水中有机碳硫之比例,即可改善难生物降解废水的可生化性。文中简要介绍了吸附、水解与湿式氧化法预处理的效果。  相似文献   

10.
生物表面活性剂强化疏水性有机污染物生物降解研究进展   总被引:7,自引:0,他引:7  
介绍了生物表面活性剂的类型、理化性质、生物表面活性剂提高疏水性有机污染物生物可利用性的机理及其在污染场地生物修复中应用方面的研究进展。生物表面活性剂不仅具有乳化、增溶、降低表/界面张力等功能,而且低毒、对环境友好、易于生物降解,因而在环境污染的生物治理方面具有极大的应用潜力。  相似文献   

11.
This response follows on from a recent discussion by Sánchez (2009) on test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Test methods to assess the biodegradability/biodegradable content of organic waste are of great interest across Europe for different purposes, such as landfill acceptance criteria, monitoring treatment facility performance and for monitoring the diversion of biodegradable municipal waste (BMW) from landfill. Many studies have recently attempted to correlate short-term test methods with long-term anaerobic test methods. This response discusses recent findings and conclusions made by Sánchez (2009) and describes recent work undertaken at Cranfield University to develop the enzymatic hydrolysis test (EHT) method. The EHT has previously shown potential as a short-term, non-biological, biodegradability assessment tool, however there is a requirement to further develop this test method. We conclude that aerobic and anaerobic biological test methods are not the only suitable methods of assessing waste treatment process performance; and that alternative methods such as EHT are feasible and potentially suitable.  相似文献   

12.
The aim of this study was to evaluate the suitability of in vitro enzymatic methods for assaying the biodegradability of new starch-based biopolymers. The materials studied included commercial starch-based materials and thermoplastic starch films prepared by extrusion from glycerol and native potato starch, native barley starch, or crosslinked amylomaize starch. Enzymatic hydrolysis was performed using excessBacillus licheniformis -amylase andAspergillus niger glucoamylase at 37°C and 80°C. The degree of degradation was determined by measuring the dissolved carbohydrates and the weight loss of the samples. Biodegradation was also determined by incubating the samples in a compost environment and measuring the weight loss after composting. The results indicated that the enzymatic method is a rapid means of obtaining preliminary information about the biodegradability of starch-based materials. Other methods are needed to investigate more accurately the extent of biodegradability, especially in the case of complex materials in which starch is blended with other polymers.  相似文献   

13.
以江苏省某化工园区污水处理厂的原水为研究对象,分别采用臭氧氧化、铁碳微电解、Fenton氧化3种物化法对其进行强化预处理,并运用GC-MS技术对典型污染物进行了分析。实验结果表明:臭氧氧化、Fenton氧化、铁碳微电解3种物化法在最佳条件下对COD的去除率分别为8.0%,51.3%,45.6%;在提高可生化性方面,臭氧氧化法效果最好,使废水的BOD_5/COD从0.112提高到0.184,Fenton氧化法和铁碳微电解法的BOD_5/COD分别为0.150和0.123;经物化预处理后,废水中的环状物质会出现开环,同时直链物质增多,但苯环、脂类及杂环等难生物降解物质依然存在;若要单纯提高废水的可生化性,建议选用臭氧氧化法;若对去除COD及提高可生化性皆有要求,建议选用铁碳微电解法。  相似文献   

14.
A wide range of waste characterization methods are available, each developed for a specific purpose such as determining compost stability, or for landfill acceptance criteria. Here test methods have been evaluated for the purpose of assessing waste treatment process performance and monitoring the diversion of biodegradable municipal waste (BMW) from landfill. The suitability factors include the timescale of the method, applicability to a wide range of materials and ability to indicate the long-term biodegradability of organic waste samples. The anaerobic test methods, whilst producing reliable results, take at least several weeks to complete, therefore, not allowing for regular routine analysis often required for diversion assessments. Short-term tests are required which can correlate with, and, therefore, estimate, values obtained from long-term anaerobic methods. Aerobic test methods were found to offer a significantly improved timescale compared with anaerobic test methods; however, they have limitations due to not measuring the full extent of sample biodegradability. No single test method was found to be completely sufficient for routine biodegradability analysis suitable for monitoring the BMW diversion from landfill. Potential areas for further research include spectrographic FT-IR or enzyme-based approaches such as the ECD or EHT methods.  相似文献   

15.
This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.  相似文献   

16.
This paper gives an overview of the methods used at the Technical Research Centre of Finland (VTT) for the biodegradability testing of solid polymers and packaging materials. Biodegradability of each polymer included in the packaging material should be separately tested. Aquatic aerobic and anaerobic tests and, in specific cases, enzymatic tests are used for screening purposes. The application of aquatic aerobic tests—an automated Sturm test (OECD 301B; ASTM D5209) and a VTT headspace test as well as an anaerobic test (ASTM D5210)—is discussed. Three composting tests and their applications are summarized. These tests are regarded as important because they can be used to simulate the biodegradability under real-life conditions. Several tests are needed to determine the fate of the polymer under real conditions and to study its biodegradability in different environments. The time needed for complete biodegradation of polymers in nature is impossible to predict with laboratory tests and should be studiedin vivo.According to the lecture given in Sweden at the Royal Institute of Technology, at a workshop on polymers from renewable resources and their degradation, November 10–11, 1994.  相似文献   

17.
Several ISO standards for determining the ultimate aerobic/anaerobic biodegradability of plastic materials have been published. In particular, ISO 14855-1 is a common test method that measures evolved carbon dioxide using such methods as continuous infrared analysis, gas chromatography or titration and others (ISO 14855-1(2005.9)). This method is a small-scale test for determining the ultimate aerobic biodegradability of plastic materials, where the amounts of compost inoculum and test sample in one tenth comparing with that of ISO 14855-1. This method is well versed in ISO/DIS 14855-2 which the carbon dioxide evolved from test vessel is determined by gravimetric analysis of carbon dioxide absorbent. The focus of this study is to elucidate statistically the results of round robin test by seven countries used MODA, which were various deviations among the experiments.  相似文献   

18.
The treatment of solid waste in controlled composting facilities is an important possibility for reducing garbage. Natural and synthetic polymeric materials can be used for many purposes, for example, as packaging materials, where compostability is required. A prerequisite for official regulations and the decision as to which materials may be composted is investigations on their biodegradability and the quality of the compost produced. Several standardization groups at the ISO, CEN, and DIN are developing definitions, test methods, and classification systems for differentiating compostable from noncompostable materials. The concept which will be standardized and used in Germany is described in detail. It includes characterization of the test material, determination of the biodegradability using laboratory tests such as simple aquatic batch tests and a controlled aerobic composting test, investigation of the disintegration of the test material in industrial or bench-scale composting facilities, and finally, chemical and ecotoxicological analysis of the compost produced.  相似文献   

19.
The aim of this study was to justify the method to determine biochemical methane potential (BMP) of biosludges and investigate the effect of ozonation and sonication on the biosludge from textile mill effluent to its biodegradability and toxicity. This study revealed that the exented anaerobic toxicity assay at a chemical oxygen demand (COD) concentration in the assay of about 1,500 mg/L was the appropiate technique to determine BMP of the biosludge. Moreover, it was found that the biodegradability of biosludge was satisfactorily increased by both of ozonation and sonication. The use of ozone dose of 0.005 g O3/g COD and 0.01 O3/g COD increased the biodegradability from 62% to 69% and 76%, respectively. While for sonication on frequency 51 kHz ±6%, 120 W for 30 and 60 min increased the biodegradability from 62% to 68% and 73%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号