首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   

2.
In October 1957 a fire in Pile Number 1, a nuclear reactor at the Windscale Works, Sellafield, resulted in the accidental release of radionuclides to the atmosphere. Previous studies have described the atmospheric transport of the resultant radioactive plume from its release on the Cumbrian coast of Northwest England to its passage across mainland Europe. Those past studies have suffered from uncertainties concerning the quantity and timing of emissions and meteorological conditions. Crabtree [1959. The travel and diffusion of the radioactive material emitted during the Windscale accident. Quarterly Journal of the Royal Meteorological Society 85, 362] initially produced estimates of plume transport based on weather observations and radiosonde profiles. Later, ApSimon et al. [1985. Long-range atmospheric dispersion of radioisotopes—I. The MESOS model. Atmospheric Environment 19(1), 99–111] based estimates of plume transport on trajectories calculated from weather charts. More recently, Nelson et al. [2006. A study of the movement of radioactive material discharged during the Windscale fire in October 1957. Atmospheric Environment, 40, 58–75] used a full three-dimensional dispersion model using digitised weather data from similar charts.This study aims to further reduce uncertainty in the plume's behaviour by using the latest available Numerical Weather Prediction Model reanalysis of meteorological data from the European Centre for Medium Range Weather Forecasts (ERA-40) coupled with current best estimates of the radioactive emissions profile. The results presented here generally support the findings of previous studies though an improvement in model comparisons against observational measurements has been found. The opportunity was also taken to extend the time horizon, and hence geographical coverage, of the modelled plume. It is considered that this paper presents the best estimate to date of the plume's behaviour.  相似文献   

3.
The Virtual Aquifer approach is used in this study to assess the uncertainty involved in the estimation of contaminant plume lengths in heterogeneous aquifers. Contaminant plumes in heterogeneous two-dimensional conductivity fields and subject to first order and Michaelis-Menten (MM) degradation kinetics are investigated by the center line method. First order degradation rates and plume lengths are estimated from point information obtained along the plume center line. Results from a Monte-Carlo investigation show that the estimated rate constant is highly uncertain and biased towards overly high values. Uncertainty and bias amplify with increasing heterogeneity up to maximum values of one order of magnitude. Calculated plume lengths reflect this uncertainty and bias. On average, plume lengths are estimated to about 50% of the true plume length. When plumes subject to MM degradation kinetics are investigated by using a first order rate law, an additional error is introduced and uncertainty as well as bias increase, causing plume length estimates to be less than 40% of the true length. For plumes with MM degradation kinetics, therefore, a regression approach is used which allows the determination of the MM parameters from center line data. Rate parameters are overestimated by a factor of two on average, while plume length estimates are about 80% of the true length. Plume lengths calculated using the MM parameters are thus closer to the correct length, as compared to the first order approximation. This approach is therefore recommended if field data collected along the center line of a plume give evidence of MM kinetics.  相似文献   

4.
《Environmental Forensics》2013,14(4):313-317
Supercritical fluid extraction (SFE) was investigated to evaluate its potential for obtaining high quality chromatographic fingerprints from soils encountered in environmental investigations. While the volatile and semivolatile fractions of light nonaqueous phase liquid (LNAPL) samples can be “fingerprinted” in a single chromatographic run, it is commonly not possible to obtain samples of LNAPL in the locations of interest. For this and other reasons, it was desirable to develop this method (SFE) of soil extraction, which allows chromatographic fingerprinting of the same quality routinely obtained with LNAPL so that environmental forensic investigations could be extended to areas beyond those containing LNAPL in monitoring wells. In this study, SFE was compared to conventional dichloromethane extraction. Both artificially spiked soil and soil from petroleum release sites were tested. Since water can be a problem when using the SFE method, particular attention was given to handling soils with high moisture contents. The SFE extracts showed excellent retention of low molecular components, including pentanes. Gas chromatography of SFE extracts yielded molecular distributions that showed no significant bias toward either low or high molecular weight components. These results show that SFE can be used to obtain an unbiased, single-run chromatographic “fingerprint” of both volatile and semivolatile hydrocarbons in contaminated soil samples.  相似文献   

5.
Light nonaqueous phase liquids (LNAPLs), such as fuels, are the source of much soil and groundwater contamination. Though the mobility of LNAPLs is limited in many environments, dissolved-phase components, such as benzene, can produce groundwater plumes that are more mobile than the LNAPL source. In such a setting, it is commonly assumed that recovery of the LNAPL will result in a reduction in risk associated with the dissolved phase. This paper synthesizes several existing multiphase and chemical transport solutions into a single linked methodology that predicts concentrations of soluble constituents within and downgradient of LNAPL source zones from dissolution of those constituents into groundwater flowing through and below LNAPL sources. This approach has been applied to a variety of LNAPL spill conditions. For biodegradable compounds, these analyses show that the period of time where the dissolved-phase plume is expanding is very small compared to the duration of most LNAPL sources, and that the downgradient extent is generally less than about 100 m for BTEX compounds. Therefore, the risk to receptors, as measured by the maximum downgradient extent of dissolved-phase plume or the maximum concentration of these compounds at a downgradient receptor, is generally unrelated to the longevity of the LNAPL sources. The maximum downgradient extent of the dissolved-phase plume is determined almost entirely by the groundwater velocity and the biodegradation rate. These analyses further demonstrate that recovery of LNAPL by hydraulic methods is often ineffective at reducing risk. Except in coarse-grained soils or intermediate soils with significant LNAPL saturations, free-product recovery approaches do not result in significant reductions in the longevity of downgradient dissolved-phase contamination. Further, for biodegradable constituents, remediation does not result in a near-term decrease in the downgradient extent of contamination. Cleanup methods that act to change the composition of the LNAPL source are more effective at reducing the downgradient concentrations, particularly for fine-grained soils or when LNAPL saturations are low.  相似文献   

6.
Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel fuel are among the most common causes of soil and groundwater contamination. Dissolution and subsequent advective transport of LNAPL components can negatively impact water supplies, while biodegradation is thought to be an important sink for this class of contaminants. We present a laboratory investigation of the effect of a water-table fluctuation on dissolution and biodegradation of a multi-component LNAPL (85% hexadecane, 5% toluene, 5% ethylbenzene, and 5% 2-methylnapthalene on a molar basis) in a pair of similar model aquifers (80 cm x 50 cm x 3 cm), one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of the LNAPL source zone (by factor 6.7), and an increase in the volume of water passing through the source zone (by factor ~18). Effluent concentrations of dissolved LNAPL components were substantially higher and those of dissolved nitrate lower in the model aquifer where a fluctuation had been induced. Thus, water-table fluctuation led to enhanced biodegradation activity (28.3 mmol of nitrate consumed compared to 16.3 mmol in the model without fluctuation) as well as enhanced dissolution of LNAPL components. Despite the increased biodegradation, fluctuation led to increased elution of dissolved LNAPL components from the system (by factors 10-20). Hence, water-table fluctuations in LNAPL-contaminated aquifers might be expected to result in increased exposure of downgradient receptors to LNAPL components. Accordingly, water-table fluctuations in contaminated aquifers are probably undesirable unless the LNAPL is of minimal solubility or the dissolved-phase plume is not expected to reach a receptor due to distance or the presence of some form of containment.  相似文献   

7.
The intent of this paper is to relate the magnitude of the error bounds of data, used as inputs to a Gaussian dispersion model, to the magnitude of the error bounds of the model output, which include the estimates of the maximum concentration and the distance to that maximum. The research specifically addresses the uncertainty in estimating the maximum concentrations from elevated buoyant sources during unstable atmospheric conditions, as these are most often of practical concern in regulatory decision making. A direct and quantitative link between the nature and magnitude of the input uncertainty and modeling results has not been previously investigated extensively. The ability to develop specific error bounds, tailored to the modeling situation, allows more informed application of the model estimates to the air quality issues.In this study, a numerical uncertainty analysis is performed using the Monte-Carlo technique to propagate the uncertainties associated with the model input. Uncertainties were assumed to exist in four model input parameters: (1) wind speed, (2) standard deviation of lateral wind direction fluctuations, (3) standard deviation of vertical wind direction fluctuations, and (4) plume rise. For each simulation, results were summarized characterizing the uncertainty in four features of the ground-level concentration pattern predicted by the model: (1) the magnitude of the maximum concentration, (2) the distance to the maximum concentration, and (3) and (4) the areas enclosed within the isopleths of 50% and 25% of the error-free estimate of maximum concentration.The authors conclude that the error bounds for the estimated maximum concentration and the distance to the maximum can be double that of the error bounds for individual model input parameters. The model output error bounds for the areas enclosed within isopleth values can be triple the error bounds of the input. It was not our intent to cover all possible combinations for the error in the input parameters. Ours was a much more limited goal of providing a lower bound estimate of model uncertainty in which we assume the input is reasonably well characterized and there is no bias in the input. These results allow estimation of minimum bounds on errors in model output when considering reasonable input error bounds.  相似文献   

8.
An analytical model is used to simulate the effects of partial source removal and plume remediation on ethylene dibromide (EDB) and 1,2-dichloroethane (1,2-DCA) plumes at contaminated underground storage tank (UST) sites. The risk posed by EDB, 1,2-DCA, and commingled gasoline hydrocarbons varies throughout the plume over time. Dissolution from the light nonaqueous phase liquid (LNAPL) determines the concentration of each contaminant near the source, but biological decay in the plume has a greater influence as distance downgradient from the source increases. For this reason, compounds that exceed regulatory standards near the source may not in downgradient plume zones. At UST sites, partial removal of a residual LNAPL source mass may serve as a stand alone remedial technique if dissolved concentrations in the source zone are within several orders of magnitude of the applicable government or remedial standards. This may be the case with 1,2-DCA; however, EDB is likely to be found at concentrations that are orders of magnitude higher than its low Maximum Contaminant Level (MCL) of 0.05 μg/L (micrograms per liter). For sites with significant EDB contamination, even when plume remediation is combined with source depletion, significant timeframes may be required to mitigate the impact of this compound. Benzene and MTBE are commonly the focus of remedial efforts at UST sites, but simulations presented here suggest that EDB, and to a lesser extent 1,2-DCA, could be the critical contaminants to consider in the remediation design process at many sites.  相似文献   

9.
This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.  相似文献   

10.
The problem of allocating liability cleanup costs is an arduous task when more than one potentially responsible party has contributed to the groundwater plume. This problem is most likely to be encountered when dealing with methyl- tert -butyl-ether (MTBE) contamination, as MTBE is seen to travel large distances in underlying aquifers. There has been a signi®cant effort in the recent past to develop liability allocation methodologies that incorporate fate and transport behavior and toxicological characteristics of the contaminants. The application of such methods often requires estimation of contaminant input from the vadose zone into the underlying aquifer. A screening level analysis is presented here to develop preliminary insights on relative mass contributions arising from different source types. The analysis illustrates how different vadose zone conceptualizations lead to vastly different contaminant loadings. Parametric studies indicate that the contaminant flux into the aquifer is very sensitive to changes in water infiltration rates. Hence, a reliable estimate of this parameter is critical for equitable allocation of remedial costs. Conceptual model formulation, should focus on identifying whether the fuel present in the aquifer can flow as a separate phase. It is also important to obtain reliable estimates for fluid saturations at the site.  相似文献   

11.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   

12.
The problem of allocating liability cleanup costs is an arduous task when more than one potentially responsible party has contributed to the groundwater plume. This problem is most likely to be encountered when dealing with methyl-tert -butyl-ether (MTBE) contamination, as MTBE is seen to travel large distances in underlying aquifers. There has been a significant effort in the recent past to develop liability allocation methodologies that incorporate fate and transport behavior and toxicological characteristics of the contaminants. The application of such methods often requires estimation of contaminant input from the vadose zone into the underlying aquifer. A screening level analysis is presented here to develop preliminary insights on relative mass contributions arising from different source types. The analysis illustrates how different vadose zone conceptualizations lead to vastly different contaminant loadings. Parametric studies indicate that the contaminant flux into the aquifer is very sensitive to changes in water infiltration rates. Hence, a reliable estimate of this parameter is critical for equitable allocation of remedial costs. Conceptual model formulation, should focus on identifying whether the fuel present in the aquifer can flow as a separate phase. It is also important to obtain reliable estimates for fluid saturations at the site.  相似文献   

13.
D W Pennington 《Chemosphere》2001,44(7):1617-1631
In many national and international initiatives, where thousands of chemicals are screened, the ability of a chemical to be transported over long distances is an important criterion in determining whether environmental concern is warranted. Preliminary screening can be conducted using: (1) effective travel distance (ETD); (2) characteristic travel distance (CTD); and/or (3) the degradation half-life in air. The CTD is the distance traveled before the concentration of a chemical in air is reduced by a factor of 50%, for example. Differences in the distance traveled associated with the environmental release medium of a chemical are taken into account the ETD measure. The ETD can be defined as the distance traveled before the concentration in a stated medium (air, water, soil or sediment) is reduced to a specified level for a given mass release rate to air, to water and/or to soil. However, despite their merits, the use of multimedia screening measures like the ETD and CTD remains inhibited by both the limited availability of degradation data (particularly for soils and sediments) and release pattern information. Preliminary screening in terms of the atmospheric degradation half-life is commonly the only practical option. In this paper, straightforward guidelines based on partitioning coefficients (Henry's law constant and octanol water partitioning coefficient) are proposed to reduce the degradation data requirements of multimedia measures like the ETD and CTD. The values used in the guidelines reflect a quantifiable trade-off between data acquisition requirements and uncertainty. The relationship of the potential screening options (using all degradation data versus using only data identified as required in the CTD and ETD approaches; screening in terms of the degradation half-life in air versus the CTD versus the ETD) is derived and the consequences of the differences are illustrated. A three-tiered screening methodology is then proposed. This tiered methodology will result in significant savings in time and money in national and international screening initiatives.  相似文献   

14.
Soil structure critically affects the hydrological behaviour of soils. In this paper, we examined the impact of areal heterogeneity of hydraulic properties of a structured soil on soil ensemble behaviour for various soil water flow processes with different top boundary conditions (redistribution and drainage plus evaporation and infiltration). Using a numerical solution of the Richards' equation in a stochastic framework, the ensemble characteristics and flow dynamics were studied for drying and wetting processes observed during a time interval of ten days when a series of relatively intense rainfall events occurred. The effects of using unimodal and bimodal interpretative models of hydraulic properties on the ensemble hydrological behaviour of the soil were illustrated by comparing predictions to mean water contents measured over time in several sites at field scale. Although the differences between unimodal and bimodal fitting are not significant in terms of goodness of fit, the differences in process predictions are considerable with the bimodal soil simulating water content measurements much better than unimodal soil. We also investigated the relative contribution of the soil variability of each parameter on the variance of the water contents obtained as the main output of the stochastic simulations. The variability of the structural parameter, weighting the two pore space fractions in the bimodal interpretative model, has the largest contribution to water content variance. The contribution of each parameter depends only partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow process being observed. We observed that the contribution of the retention parameters to uncertainty increases during drainage processes; the opposite occurs with the hydraulic conductivity parameters.  相似文献   

15.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature.  相似文献   

16.
The purpose of this study was to evaluate the performance of current regulatory algorithms for predicting plume rise for refinerytype sources (short stacks and a wide range of source conditions) and the performance of new or alternate algorithms which may provide better estimates. To meet the objectives, five plume rise algorithms were statistically evaluated against ten field and laboratory plume rise data bases. Two forms of the Briggs plume rise equations were tested because they are almost exclusively used in current EPA regulatory models. Two modified Briggs equations were tested to assess how simple modifications can Improve the accuracy of the estimates. The fifth algorithm was a numerical solution to the basic equations for conservation of mass, momentum, and energy often referred to as an Integral plume rise algorithm. This algorithm was selected because It handles the wide range of source and atmospheric boundary-layer conditions that affect trajectories of plumes from refinery stacks.

Ten independent plume rise data bases were assembled that covered a wide range of source and meteorological conditions. From the data bases, a total of 107 different data sets were obtained and each data set included plume rise observations versus downwind distance for one source and meteorological condition. Each model was run for each data set and the root-mean-square and mean error between model and observation was computed for use in statistically evaluating model performance.

The statistical evaluation of the algorithms showed that the rms error (considering all data bases) for the Integral plume rise algorithm was approximately 30 percent less than the errors for all other algorithms tested. This difference was significant at the 95 percent confidence level. The results suggest that improved plume rise estimates in regulatory models applied to refineries and other appropriate sources could be achieved to reduce costs and improve ambient air quality estimates through the use of an integral plume rise algorithm.  相似文献   

17.
Areas impacted by petroleum refining and handling operations may become subject to CERCLA enforcement. Because of CERCLA's petroleum exclusion clause, determining whether contamination in a CERCLA Site originated from petroleum products or hazardous wastes becomes important. Because certain metals are typically enriched in wastes relative to petroleum products and background soils, knowledge of metal contents in these potential end member metal sources is an important step towards contaminant source identification in soils and sediments. In LNAPL plumes, metal content, particularly lead, may be claimed to be the result of wastes mishandling and not due only to the presence of leaded gasoline in the plume. Analysis of the percent gasoline in the plume and accounting for weathering are steps to determining whether the lead content in an LNAPL plume is within the historical lead concentration ranges in gasolines. In addition to metals analyses, understanding of operational parameters such as the history of petroleum refining and handling operations, leaks, spills, and cleanup activities are needed for successful conclusion of the applicability of the petroleum exclusion.  相似文献   

18.
In 1993, a paper was published by Christensen and Larsen that offered a method for determining the age of diesel oil spills in soil (7Ground Water Mount.R . Fall, 142–149). It presented an empirical time-based model of the degradation of diesel fuel in soils using chemical data gathered at petroleum release sites in Denmark and the Netherlands. Now, evaluation of the validity of the application of this work to subsurface petroleum releases in other countries remains.In the U.S.A., investigations assessing date(s) of release of diesel fuel in soils, e.g. age dating of subsurface petroleum contamination, have considerable interest. Litigation-driven scientific investigations with accompanying expert testimony in a court of law are underway. The number of instances where application of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties is growing in the U.S.A.This paper presents two case studies which evaluate the applicability of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties in general. It illustrates the approach using gas chromatographic data from two recently-completed projects evaluating the applicability of the Christensen and Larsen model to a No. 2 fuel oil/diesel fuel surface spill in the U.S.A. Results showed that the application of the model to petroleum-contaminated soils was scientifically valid, provided its applicability was evaluated using hypothesis testing for specific changes in the characteristics of the petroleum hydrocarbon distribution in a number of soil samples collected over time at one site. The paper offers observations on the application of the Christensen and Larsen model to petroleum found in the light non-aqueous phase liquid (LNAPL) phase and groundwater.  相似文献   

19.
In 1993, a paper was published by Christensen and Larsen that offered a method for determining the age of diesel oil spills in soil (Christensen and Larsen, 1993 Ground Water Mount. R . Fall , 142-149). It presented an empirical time-based model of the degradation of diesel fuel in soils using chemical data gathered at petroleum release sites in Denmark and the Netherlands. Now, evaluation of the validity of the application of this work to subsurface petroleum releases in other countries remains. In the U.S.A., investigations assessing date(s) of release of diesel fuel in soils, e.g. age dating of subsurface petroleum contamination, have considerable interest. Litigation-driven scientific investigations with accompanying expert testimony in a court of law are underway. The number of instances where application of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties is growing in the U.S.A. This paper presents two case studies which evaluate the applicability of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties in general. It illustrates the approach using gas chromatographic data from two recently-completed projects evaluating the applicability of the Christensen and Larsen model to a No. 2 fuel oil/diesel fuel surface spill in the U.S.A. Results showed that the application of the model to petroleum-contaminated soils was scientifically valid, provided its applicability was evaluated using hypothesis testing for specific changes in the characteristics of the petroleum hydrocarbon distribution in a number of soil samples collected over time at one site. The paper offers observations on the application of the Christensen and Larsen model to petroleum found in the light non-aqueous phase liquid (LNAPL) phase and groundwater.  相似文献   

20.
A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号