首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Coastal afforestation suffers from low survival and slow growth due to harsh conditions and lack of robust seedlings. Inoculation of P-solubilizing bacteria (PSB) or N2-fixing bacteria (NFB) are effective in promoting plant growth and thus potentially helpful for coastal afforestation. However, it remains unclear about the generality and specificity of these plant-growth-promoting-bacteria (PGPB) on the growth of salttolerant trees. We inoculated seedlings of two mangrove trees and one terrestrial salt-tolerant tree with pure cultures of PSB or mixed cultures of PSB and NFB. Plant biomass, height, base diameter and N and P concentrations were determined six months after bacterial inoculation. We found that inoculation of PGPB had an overall promoting effect on the seedling growth of three tree species, but the effects differed greatly (3–280% increase) among plant species and bacterial isolates or bacterial combinations. Only in the terrestrial tree, co-inoculations of PSB and NFB showed greater promoting effects than monocultures of PSB. Root: shoot ratios of seedlings were not changed by bacterial inoculation. Inoculation treatments moderately elevated N concentrations in shoots and roots and P concentrations only in roots of seedlings. Our results suggest that PGPB might have a general promoting effect on the seedling growth of salt-tolerant trees. Nevertheless, the magnitude of promoting effects and the comparative advantage of dual inoculation over single inoculation are species-specific. The generality and specificity of the plant-PGPB relationship are similar to the plantmycorrhizal symbiosis. In addition, tissue nutrient improvement might not be the main mechanism of the promoting effects by PGPB.  相似文献   

2.
A greenhouse pot experiment was conducted to study the influence of potassium fertilizers in different forms and rates on cadmium (Cd) uptake by two cultivars of spring wheat (Triticum aestivum, L.): Brookton and Krichauff. Potassium fertilizers were added to soil at four levels: 0, 55, 110 and 166 mg K kg(-1) soil as KNO(3) (N), KCl (C) or K(2)SO(4) (S). CdCl(2) was added to all the treatments at a uniform rate equivalent to 15 mg Cd kg(-1) soil. Plant shoot and root dry weights (DW) of both cultivars were reduced significantly by the addition of K-fertilizer in C and S treatments but there were only marginal changes in the N treatments. The Cd concentrations in shoots and whole plants increased significantly (P<.001) with increasing K addition, from 37.5 to 81.4 mg kg(-1) and from 42.9 to 86.8 mg kg(-1) for Brookton and Krichauff, respectively. However, no obvious effect was observed in the N treatments, except for the highest K level (K3) where there was a sharp increase in Cd concentration compared to the lower additions. Forms of K-fertilizers significantly influenced the Cd concentrations in plant shoots and roots (P<.001), but there was no significant difference between C and S treatments. This experiment showed that anions Cl(-) and SO(4)(2-) increase Cd uptake by plants, which can be interpreted as Cl(-) and SO(4)(2-) complexing readily with Cd(2+) and thereby increasing the bioavailability of Cd(2+) in soils. The effect of potassium itself on plant uptake of Cd was also observed. We suggest that when applying potassium fertilizer to Cd-contaminated soils, the forms and rates should be considered.  相似文献   

3.
Previous studies have documented that phosphate compounds of lead (Pb) [e.g., pyromorphite Pb5(PO4)3-(X), where X=OH, F or Cl] are comparatively insoluble, and their formation in Pb-contaminated soil may be a means of reducing the bioavailability and chemical lability of Pb in soil. In this study, the effect of phosphate compound amendments on the bioavailability of Pb in a polluted alkaline soil was examined. A Pb-contaminated soil was treated with hydroxyapatite (HA), phosphate rock (PR), water-soluble P fertilizer (single superphosphate, SSP) and the combination of HA with SSP. The bioavailability of Pb was determined in plant uptake studies with vegetables (Brassica campetris L. var. communis, BC) and Brassica oleracea L. var. acephala, BO) and sequential extraction. The results indicated that the Pb concentrations in both shoots and roots of two vegetable plants decreased with increasing quantities of added P compound, and the HA treatment had the best effect at the level of 5000 mg of P kg(-1)as compared with other treatments in which the Pb concentrations in shoots of BO and BC decreased 51.9% and 65.5%, respectively, and the Pb concentrations in roots of BO and BC decreased 67.3% and 57.2%, respectively, as compared with the control treatment. The SSP treatment had little effect on the Pb concentrations in plant tissues. Sequential extraction results indicated that the addition of soil amendments transform soil Pb from nonresidual fractions to residual fraction substantially. The effect of treatments followed this order at the equivalent P addition: HA>PR>HA+SSP>SSP. The results suggested that HA amendments can lower the bioavailability and increase the geochemical stability of soil Pb, so it has the potential for in situ remediation in Pb-contaminated soils.  相似文献   

4.
The role of rhizosphere bacteria in facilitating the solubility of copper (Cu) in contaminated soil and Cu accumulation in plant were studied. The bacteria strains were isolated from the rhizosphere of Elsholtzia splendens, a Cu accumulator growing on Tonglu Mountain copper mines. After the sandy soils containing 237 mg kg(-1) were incubated with the bacteria strains, it was indicated that rhizosphere microbes played an important role in influencing the availability of water-soluble Cu in soils. Soils had greater concentrations of water-extractable Cu compared with axenic soils inoculated with different bacterial strains. Further evidence for bacterial facilitation of increased solubility of Cu in the soil was obtained using the antibiotic ampicillin (0.1 mg g(-1)). There were 36% decreases in Cu concentration in the presence of bacterial strain MS12 and ampicillin together compared with bacterial inoculation alone. Different bacterial strains had different abilities on soil water-soluble Cu. To achieve the highest rates of plant Cu accumulation, it was necessary for bacteria to be present in the rhizosphere of E. splendens. Inoculated plants supplied with 20 micromol L(-1) CuSO4 had significantly greater concentrations of Cu in shoots and roots than uninoculated plants and bacterial strain MS2 was the most effective strain in promoting plant Cu uptake. There were 2.2-fold and 2.5-fold increases in Cu accumulation in the shoots and roots of plants inoculated with strain MS2 compared to axenic controls. Furthermore, when ampicillin and the bacterial strains were added together to the nutrient solution, the Cu concentrations in roots and shoots of ampicillin-treated plants were lower than those in inoculated plants. When ampicillin was added to the nutrient solution, Cu accumulation was inhibited by about 24-44% in shoots and 20-44% in roots. The above results provided a new insight into the phytoremediation of Cu-contaminated soil.  相似文献   

5.
微齿眼子菜与马来眼子菜对水深变化的适应性比较研究   总被引:1,自引:0,他引:1  
水深与水位波动是影响湖泊中沉水植被分布格局和物种多样性的重要因子。在洱海开展为期2个多月的原位实验,从大型浮台上悬挂吊盆模拟不同的水位梯度(2、4和6 m)和水位变化模式(水位上升、水位下降和水位波动)对微齿眼子菜和马来眼子菜生长的影响。实验结果表明:水深梯度和水位变化模式对两种植物的生物量、株高、节数和叶片数具有显著影响,推测微齿眼子菜在洱海的临界生长水深约为5 m,马来眼子菜的临界生长水深为35 m;超过临界水深后两种植物生物量和叶片数下降、株高和节数不增长。在2 m初始水深处光照相对充足,生物量随时间稳定增长,水深增加(20 cm/6 d×60 d)对两种植物的生物量均未造成显著影响,株高和节数随水深显著增加,具有响应空间增长的潜力。在初始水深为4 m时,进一步增加水深(20 cm/6 d×30 d)会抑制微齿眼子菜生长,继后减少(-10 cm/6 d×30 d)水深仍无法使其恢复生长;但先减少水深后增加水深可以小幅促进其生长。在初始水深为4 m时,3种水位变化模式对马来眼子菜的生物量影响不大,但减少水深后增加水深可以小幅促进其生长。初始水深6 m抑制两种植物的生长,并导致马来眼子菜死亡。实验结果表明,微齿眼子菜比马来眼子菜对弱光耐受性更好  相似文献   

6.
A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed.  相似文献   

7.
The structure of the crown and branching; the growth, development, and ontogeny of branches; and organogenesis and growth of female shoots in the model Siberian stone pine trees were studied in four types of habitats at the timberline in the central Altai Mountains (1700–2170 m a.s.l.). The results provided evidence that the ecological forms of trees appear due to changes in the pattern of branching as well as to the decreased rate of vegetative (primarily apical) growth. The diameter of the shoot pith is one of the most variable characters reflecting the deterioration of environmental conditions at higher elevations.  相似文献   

8.
Radioniobium is present in long-lived nuclear waste as a result of the activation of zirconium pellets associated with the nuclear fuel. The behaviour of niobium (Nb) in the environment and especially its fate in the soil-plant system has not been thoroughly investigated so far. In safety assessment of French long-lived nuclear waste disposal, data concerning the mobility and the bioavailability of Nb in soils are needed as well as general trends of its fate in the specific environment around the site of French underground research laboratory. Therefore, we investigated the mobility of 95Nb in three different soils typical of the area of north-eastern France and its uptake by two plants, rye grass (Lolium perenne L.) and winter wheat (Triticum aestivum L.). Soil:solution distribution of 95Nb was observed in 1:10 batch experiments with deionized water for a 3-day period. Results showed that K(d) values were high (in the order of 10(3) L kg(-1)) and were still significantly increasing after 3 days. A mathematical model, fitted to describe the decrease of the radioactivity after 3 days, is proposed to calculate sorption ratios--SR--(rather than K(d) values as equilibrium was not reached) over longer periods. Soil-to-plant concentration ratios (CR) were measured in shoots and roots of the two plants after cultivation on two soils spiked with (95)Nb (406kBqkg(-1)). Soil-to-root dry weight CR were high (0.30-1.52) and could probably be due to efficient uptake into the roots. However, no transfer of Nb to plant shoots was detected in any of the soils. Nb is thus a rather immobile element in soils and its transfer to plants seems limited to underground parts. It would therefore tend to accumulate in surface horizons of soils in case of long-term continuous surface release.  相似文献   

9.
A pot experiment was conducted to study the influence of elemental sulphur (S) on solubility of soil Pb, Zn and Cd and uptake by maize (Zea mays L.). Two rates of elemental sulphur (S) applied at 0 (S0) and 200 (S200) mmol kg(-1) soil with three rates of each heavy metal at Pb, 0 (Pb0), 200 (Pb200), 400 (Pb400) mg kg(-1) soil, Zn, 0 (Zn0), 100 (Zn100), 200 (Zn200) mg kg(-1) soil and Cd, 0 (Cd0), 50 (Cd50), 100 (Cd100) mg kg(-1) soil, respectively. The result showed that with S application at 200 mmol S kg(-1), soil pH decreased about 0.3 unit and the solubility of the Zn and Cd was significantly increased, but the solubility of Pb had no significant influence. The concentration of Pb, Zn and Cd in maize shoots and roots were increased with increasing rates of heavy metals. However, the concentration of Zn and Cd in shoots and roots were higher with application of S rather than without S but no significant difference was found for Pb. The highest concentration of Zn in the shoots was 2.3 times higher with application of S rather than without at the same rate of Zn, 200 mg kg(-1). Plant biomass was also significantly affected by the application of S and of heavy metals. With heavy metal addition, the shoot and root biomass were decreased with the rates of those of heavy metals increased either with or without application of S. However, the shoot biomass was significantly decreased with S application at the same rate of heavy metals except that with Zn addition. The removal of Cd and Pb by maize uptake and accumulation with application of S had no significant increase compared to that without, but the removal Zn by maize uptake from the soil increased by application of S, 90.9 microg plant(-1) contrast to 25.7 microg plant(-1) at Zn200 within a growth period of only 40 days.  相似文献   

10.
The seasonal growth of shoots, needles, and the trunk in the Norway spruce has been studied in a bilberry spruce forest in the middle taiga subzone of Karelia. The results show that the growth of vegetative organs in this tree species depends mainly on the air temperature regime, whereas the effect of variations in factors such as the period of sunshine, precipitation, and air humidity is relatively weak.  相似文献   

11.
简要论述了湖州市笋竹资源的特征和开发潜力,对笋竹资源开发现状予以评价,并对合理开发与保护,促进竹资源持续发展提出了对策。  相似文献   

12.
三峡水库消落带淹水后植物腐烂分解,向水体释放碳、氮养分,可能导致二氧化碳(CO2)、甲烷(CH 4)和氧化亚氮(N2O)等温室气体(GHGs)排放,消落带可能成为大气GHGs的排放源,但目前植物淹水腐解导致的GHGs排放还缺乏定量研究。选择三峡水库消落带优势草本植物狗牙根(Cynodon dactylon (Linn.) Pers.)、水蓼(Polygonum hydropiper)、鬼针草(Bidens bipinnata Linn.)和苍耳(Xanthium sibiricum Patrin ex Widder.)的茎叶,开展为期120 d的室内浸泡模拟淹水实验,测定植物残体干重、上覆水的水化学指标和养分浓度并监测其动态变化,同时测定水-气界面GHGs排放速率,旨在查明消落带植物残体淹水后的GHGs排放过程和通量及其植物种间差异。结果表明:植物残体淹水初期(前15 d)干重下降较快,随后下降变缓,其中苍耳干重损失最大,狗牙根干重损失最小;植物残体淹水初期(前15 d)水-气界面的GHGs快速排放,淹水第4~7 d达到峰值,中后期(第30 d起)平稳排放,鬼针草和苍耳淹水后水-气界面GHGs排放速率显著高于狗牙根和水蓼(P<0.05),鬼针草和苍耳淹水后CO 2和CH4累积排放量显著高于狗牙根和水蓼,苍耳、鬼针草和水蓼淹水后N2O累积排放量显著高于狗牙根,总体而言,狗牙根淹水后GHGs排放量最低;消落带优势草本植物残体淹水后的CO2和CH 4排放速率随上覆水的DOC浓度升高而增加, N2O排放速率与上覆水的NO-3-N浓度具有正相关关系,受NO-3-N浓度驱动。同时,植物形态和其碳氮含量影响植物淹水分解速率、进而影响养分释放和GHGs排放。  相似文献   

13.
Studies on speckled alder trees in an alder forest of grass-herb type in the northern taiga subzone of Northern Karelia have shown that specific features of the seasonal growth of shoots, leaves, and stems in these trees depend on a number of ecological factors, with air temperature playing the main role.  相似文献   

14.
Morphological trait variation in populations of rhizomatous (Cypripedium calceolus, Listera ovata) and root-tuber orchid species (Platanthera bifolia, Gymnadenia conopsea) has been studied along a latitudinal gradient in Europe. It has been shown that the structure of shoots changes with transition from the center to the northern or southern periphery of the species range. The reduction in the number of metameres at the range periphery is more distinct in orchids with multimetameric shoots, compared to those with oligometameric shoots. The plasticity of shoot structure observed along the geographic gradient is contingent on climatic factors and can be manifested regionally in cases of long-term temperature deviations. Other morphological parameters, such as shoot height and the sizes of leaves and flowers, can serve as indicators of ecological conditions in habitats.  相似文献   

15.
This study evaluated the potential effect of ionising radiation on population growth using simple population models and parameter values derived from chronic exposure experiments in two invertebrate species with contrasting life-history strategies. In the earthworm Eisenia fetida, models predicted increasing delay in population growth with increasing gamma dose rate (up to 0.6 generation times at 11 mGy h(-1)). Population extinction was predicted at 43 mGy h(-1). In the microcrustacean Daphnia magna, models predicted increasing delay in population growth with increasing alpha dose rate (up to 0.8 generation times at 15.0 mGy h(-1)), only after two successive generations were exposed. The study examined population effects of changes in different individual endpoints (including survival, number of offspring produced and time to first reproduction). Models showed that the two species did not respond equally to equivalent levels of change, the fast growing daphnids being more susceptible to reduction in fecundity or delay in reproduction than the slow growing earthworms. This suggested that susceptibility of a population to ionising radiation cannot be considered independent of the species' life history.  相似文献   

16.
基于高程的环境库兹涅茨曲线实证分析   总被引:2,自引:0,他引:2  
本文利用GIS的空间分析技术。以高程带为取样单元。研究在高程带上三种主要的大气污染物与经济发展之间的定量关系。以重庆市为例,验证环境库兹涅茨在高程上是否存在。研究结果发现。污染物浓度随高程的增加呈非单调下降的趋势。人均GDP随高程的增加先增大后减小。在高程上。污染物浓度与经济发展之间的关系和两者在时间序列和国别(或地区)序列上环境库兹涅茨曲线研究的结论相似。其中。TSP和NOx分别与人均GDP之间呈较稳定的呈“N”形和饲“U”形关系。受人口密度和高程影响较大;而SO2与人均GDP之间关系不稳定。  相似文献   

17.
Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.  相似文献   

18.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fractions: hydrophilic acids (Hyd), humic acids (HA) and fulvic acids (FA). In this manner, change in absolute solution concentration and relative percentage for each fraction could be calculated as a function of extraction equilibrium pH. The soils were also analyzed for solid phase total organic carbon and total recoverable metals (EPA Method 3051). Partitioning coefficients were calculated for the metals and organic carbon (OC) based on solid phase concentrations (less the metal or OC removed by the extraction) divided by solution concentrations. Cu and Pb concentrations in solution as a function of extract equilibrium pH are greatest at low and high pH resulting in parabolic desorption/dissolution curves. While processes such as proton competition and proton promoted dissolution can account for high solution metal concentrations at low pH, these processes cannot account for higher Cu and Pb concentrations at high pH. DOC increases with increasing pH, concurrently with the increase in Cu and Pb solution concentrations. While the absolute concentrations of FA and HA generally increase with increasing pH, the relative proportional increase is greatest for HA . Variation in HA concentrations spans three orders of magnitude while FA concentrations vary an order of magnitude over the pH range examined. Correlation analysis strongly suggests that HA plays a major role in increasing the concentration of solution Cu and Pb with increasing pH in the 18 soils studied. The percentage of the OC that was due to FA was nearly constant over a wide pH range although the FA concentration increased with increasing pH and its concentration was greater than that of the HA fraction at lower pH values (pH = 3-5). Thus, in more acidic environments, FA may play a larger role than HA in governing organo-metallic interactions. For Cd, Ni, and Zn, the desorption/dissolution pattern shows high metal solution concentrations at low pH with slight increases in solution concentrations at extremely high pH values (pH>10). The results presented here suggest that the effects of dissolved organic carbon on the mobilization of Cd, Ni, and Zn may only occur in systems governed by very high pH. At high pH, it is difficult to distinguish in this study whether the slightly increased solution-phase concentrations of these cations is due to DOC or hydrolysis reactions. These high pH environments would rarely occur in natural settings.  相似文献   

19.
Four introduced and one aboriginal species of the genus Pinus L. have been studied in the middle taiga subzone of southern Karelia. Significant interspecific differences in the dates of onset, cessation, and peak of the growth of shoots and needles have been revealed. It has been shown that their annual increment depends on the rate of growth, rather than on its duration. The dynamics of shoot and needle growth in introduced and aboriginal species, though largely similar, differ in some respects. These differences reflect species-specific responses to hydrothermal conditions in a certain growing season.  相似文献   

20.
为了研究不同盐度梯度下芦苇(Phragmites australis)的生态适应性及其生长的限制因子,对崇明盐度梯度下的3个滩涂湿地生长的芦苇及土壤生态化学计量学指标进行测定;分析不同盐度下芦苇种群的生态化学计量学之间的差异,及土壤与芦苇元素、元素比之间的相关性。结果表明:(1)崇明滩涂湿地土壤C、N、P含量和C/N、C/P、N/P平均值分别是15.01、0.69、0.86g/kg,22.09、21.87、0.96。芦苇的C、N、P含量及C/N、C/P、N/P平均值分别为413.17、10.75、2.53g/kg,41.49、293.58、7.29。(2)随着崇明滩涂湿地土壤盐度增加,土壤的C、N含量及芦苇的C含量、C/N先降低后增加;土壤的C/N、C/P、N/P及植物的C/P、N/P增加;土壤的P含量及植物N、P含量降低。(3)盐度梯度下滩涂湿地土壤与芦苇生态化学计量学中的C、P、C/P、N/P之间均正相关关系,土壤N含量与植物的C/P正相关,与N/P负相关;而C/N与植物P含量之间有负相关性。(4)该研究区土壤的C、N元素较为匮乏,P含量较高;植物的N/P值小于14,说明崇明芦苇生长主要受到N的限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号