首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
This paper describes the application of wet air oxidation to the treatment of desizing wastewater from two textile companies. A two-liter high temperature, high pressure autoclave reactor was used in the study. The range of operating temperatures examined was between 150 and 290℃, and the partial pressure of oxygen ranged from 0. 375 to 2.25 MPa. Variations in pH,CODCr and TOD content were monitored during each experiment and used to assess the extent of conversion of the process. The effects of temperature, pressure and reaction time were explored extensively. More than 90 % CODCr reduction and 80 % TOC removal have been obtained. The results have also been demonstrated that WAO is a suitable pre-treatment methods due to improvement of the BOD5/CODCr ratio of desizing wastewater. The reaction kinetics of wet air oxidation of desizing wastewater has been proved to be two steps, a fast reaction followed by a slow reaction stage.  相似文献   

2.
The 2,4,6-trinitrotoluene(TNT)is a potential carcinogens and TNT contaminated wastewater,which could not be effectively disposed with conventional treatments.The supercritical water oxidation(SCWO)to treat TNT contaminated wastewater was studied in this article.The TNT concentration in wastewater was measured by high-performance liquid chromatograph(HPLC)and the degraded intermediates were analyzed using GC-MS.The results showed that SCWO could degrade TNT efficiently in the presence of oxygen.The reaction temperature,pressure,residence time and oxygen excess were the main contributing factors in the process.The decomposition of TNT was accelerated as the temperature or residence time increased.At 550℃,24 MPa,120 s and oxygen excess 300%,TNT removal rate could exceed 99.9%.Partial oxidation occured in SCWO without oxygen.It was concluded that supercritical water was a good solvent and had excellent oxidation capability in the existence of oxygen.The main intermediates of TNT during SCWO included toluene,1,3,5-trinitrobenzene,nitrophenol,naphthalene,fluorenone,dibutyl phthalate,alkanes and several dimers based on the intermediate analysis.Some side reactions,such as coupled reaction,hydrolysis reaction and isomerization reaction may take place simultaneously when TNT was oxidized by SCWO.  相似文献   

3.
Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.  相似文献   

4.
Function of anaerobic portion in a conventional sequencing batch reactor   总被引:2,自引:0,他引:2  
The performance of SBRs treating two kinds of wastewater(synthetic wastewater containing polyvinyl alcohol and effluent from a coke-plant wastewater treatment system)was investigated in this study,in order to examine the exact function of anaerobic portion in a conventional SBR.The set up of 4-or 8-hour anaerobic mixing period in a SBR's cycle did not benefit for PVA degradation.While an anaerobic reactor seeded with anaerobic sludge could partly hydrolyse and acidify PVA into readily-degradable intermediates.During the anaerobic fill period of an SBR treating the effluent from a coke-plant wastewater treatment system,the organic concentration was reduced to certain extent due to the adsorption of activated sludge and dilution of the mixed liquor from the previous cycle.Parts of readily-degradable organics in the influent were utilised by denitrifiers as carbon source.The biomass in a conventional SBR was alternatively imposed to aerobic and anaerobic conditions in its operating cycle,the environmental conditions needed for anaerobic hydrolization and acidification of refractory organics could not occur in such an SBR.  相似文献   

5.
Supercritical gasification for the treatment of o-cresol wastewater   总被引:3,自引:1,他引:2  
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.  相似文献   

6.
A large amount of wastewater containing various toxic organic contaminants is produced during coal-to-liquids process. In this study, several spectroscopic methods were used to monitor the transformation of organic pollutants during an integrated chemical oxidation and biological process. The results showed that the hydrophobic acid fraction increased after Fenton oxidation, which was likely due to the production of small-molecule organic acids. Soluble microbial products were generated during biological treatment processes,which were degraded after ozonation; meanwhile, the hydrophilic base and acid components increased. Ultraviolet-visible spectroscopic analysis indicated that peaks at the absorption wavelengths of 280 and 254 nm, which are associated with aromatic substances, were detected in the raw water. The aromatic substances were gradually removed, becoming undetectable after biological aeration filter(BAF) treatment. Fourier transform infrared spectroscopy analysis revealed that the functional groups of phenols;benzene, toluene, ethylbenzene, and xylene(BTEX); aromatic hydrocarbons; aliphatic acids;aldehydes; and esters were present in raw wastewater. The organic substances were oxidized into small molecules after Fenton treatment. Aromatic hydrocarbons were effectively removed through bioadsorption and biodegradation after BAF process.Biodegradable organic matter was reduced and finally became undetectable after anoxic–oxic treatment in combination with a membrane bioreactor. Four fluorescent components were fractionated and obtained via excitation–emission matrix parallel factor analysis(EEM-PARAFAC). Dissolved organic matter fractionation in conjunction with EEM-PARAFAC was able to monitor more precisely the evolution of characteristic organic contaminants.  相似文献   

7.
8.
Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.  相似文献   

9.
Gasification of polyvinyl alcohol(PVA)-contaminated wastewater in supercritical water(SCW)was investigated in a continuous flow reactor at 723-873 K,20-36 MPa and residence time of 20-60 s.The gas and liquid products were analyzed by GC/TCD,and TOC analyzer.The main gas products were H_2,CH_4,CO and CO_2.Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency,and lower temperature favored the production of H_2. The effects of KOH catalyst on gas product composition were studied,and gasification efficiency were analyzed.The TOC removal efficiency(R_(TOC)),carbon gasification ratio(R_(CG))and hydrogen gasification ratio(R_(HG))were up to 96.00%,95.92% and 126.40% at 873 K and 60 s,respectively,which suggests PVA can be completely gasified in SCW.The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment of PVA wastewater.  相似文献   

10.
Estuaries have been described as one of the most difficult environments on Earth. It is difficult to know how to treat the combined wastewater in tidal rivers at the estuary, where the situation is very different from ordinary fresh water rivers. Waste oyster shell was used as the active filler in this study in a bio-contact oxidation tank to treat the combined wastewater at the Fengtang Tidal River. With a middle-experimental scale of 360 ma/day, the average removal efficiency of COD, BOD, NH3-N, TP and TSS was 80.05%, 85.02%, 86.59%, 50.58% and 85.32%, respectively, in this bio-contact oxidation process. The living microbes in the biofilms on the waste oyster shell in this bio-contact oxidation tank, which were mainly composed of zoogloea, protozoa and micro-metazoa species, revealed that waste oyster shell as the filler was suitable material for combined wastewater degradation. This treatment method using waste oyster shell as active filler was then applied in a mangrove demonstration area for water quality improvement near the experiment area, with a treatment volume of 5 × 10^3 m^3/day. Another project was also successfully applied in a constructed wetland, with a wastewater treatment volume of 1 ×10^3 m^3/day. This technology is therefore feasible and can easily be applied on a larger scale,  相似文献   

11.
中国纺织行业产生的退浆废水中聚乙烯醇(PVA)可生化性能差,其对环境的危害越来越受到环保人士的关注。因此定量检测PVA在处理退浆废水研究中显得尤为重要,然而至今没有形成一套定量测量PVA的规范方法。本文介绍了目前退浆废水中聚乙烯醇定量测量的常用方法:单波长和双波长分光光度法,以及目前测量所选用的显色体系、显色剂加入量、测量波长等条件。并从多角度分析了测量条件不规范的原因,提出了一些改进的建议,为规范PVA的定量测量研究提供参考。  相似文献   

12.
Fe2+-H2O2法处理DSD酸生产氧化母液的研究   总被引:26,自引:1,他引:25  
为改善DSD酸氧化母液的可生化降解性,将废液先用有机絮凝剂TS-1(一种季胺盐)处理,TS-1的投加量为3g/L,其后用Fe2+-H2O2法氧化,Fe2+和H2O2的量分别为150mg/L,7g/L,废液COD和色度的去除率分别可达64%和62%。经处理后的废水,其BOD5/COD≈0.3,可以认为已达到生化处理的要求。当H2O2的投量为2g/L,经Fe2+-H2O2氧化处理后的废液,再用FeCl3进行两级混凝处理(FeCl3的投加量分别为5g/L和2g/L),则COD和色度的去除率可达90%和95%。  相似文献   

13.
IntroductionWastewaterdischargedfromtextiledesizing processesischaracterizedbyitsveryhighchemicaloxygendemand(CODCr)andisoneofthemostdifficulttextilewastewatertotreat.Thedesizingwastewaterfromnaturalfibre processingoperationsmainlycontainsstarch ,glucos…  相似文献   

14.
将逆电渗析(RED)电极氧化还原反应作用于有机废水降解,可以达到利用低品位热氧化降解有机废水的目的.RED反应器阳极产生氧化反应生成的HClO及阳极表面直接电化学氧化反应对有机废水产生氧化降解作用,阴极发生电芬顿反应生成H_2O_2对有机废水产生氧化降解作用.为了验证溶液浓差能驱动的RED有机废水氧化降解工作机理,通过搭建一个由40对膜电池单元所构成的实验室规模的RED有机废水氧化降解反应器及相应的实验系统,对偶氮染料——酸性橙Ⅱ模拟废水进行氧化降解机理研究.通过3次重复性实验研究发现:在通过正交试验确定的最佳降解条件下,浓度为150 mg·L~(-1)各500 mL的酸性橙Ⅱ模拟废水分别流经RED反应器阴、阳两极,阴、阳极12 min酸性橙Ⅱ平均降解率分别可达90.14%和97.87%,20 min酸性橙Ⅱ平均降解率分别达到97.56%和99.81%.初步研究结果表明,溶液浓差能驱动的RED反应器对难生化降解有机物有较好的降解效果,为后续相关理论和实验研究提供了参考依据.  相似文献   

15.
采用O3/US-混凝法去除皮革废水中的磷.结果表明,废水中的磷90%以上是以有机磷形式存在,无法通过单一条件的混凝法去除废水中的磷,臭氧氧化可以将大部分有机磷转为无机磷,该过程在超声的强化下转化率更高.在单因素试验的基础上,以总磷的去除率为响应值,采用Box-Behnken响应曲面法考察了氢氧化钙投加量、臭氧反应时间、聚丙烯酰胺(PAM)投加量、超声波功率4个因素之间的单独及交互作用.结果表明,4个因素影响顺序为:氢氧化钙投加量 > PAM投加量 > 超声波功率 > 臭氧反应时间,数学模型拟合度高(Radj2=0.995),利用该模型预测总磷的最大去除率为95.56%,在最佳反应条件:氢氧化钙投加量为718.35 mg·L-1,臭氧反应时间为50.87 min,超声波功率为337.74 W,PAM投加量为22.27 mg·L-1时验证实验结果的总磷去除率为93.68%,与模型预测值偏差1.88%.  相似文献   

16.
超临界水处理有机废物研究新进展   总被引:4,自引:0,他引:4  
超临界水处理废物以通过添加氧化剂的超临界水氧化和不加氧化剂的超临界水萃取两种方式实现,超临界水氧化应用较多,与其它废物处理技术相比有显著优点。本文总结了超临界水氧化流程和反应机理,评述了添加剂,温度,压力及停留时间,催化剂等对超临界水氧化反应的影响,同时介绍了超临界水氧化和超临界水萃取的最新应用研究状况及尚需解决问题。  相似文献   

17.
Fenton氧化/混凝协同处理焦化废水生物出水的研究   总被引:32,自引:5,他引:27  
左晨燕  何苗  张彭义  黄霞  赵文涛 《环境科学》2006,27(11):2201-2205
对Fenton氧化/混凝协同处理焦化废水生物出水的方法进行了研究,在综合考虑经济性和去除效果的前提下,提出了反应的最佳条件:H2O2投加量为220 mg/L,Fe2+投加量为180 mg/L,聚丙烯酰胺投加量为4.5 mg/L,反应时间为0.5h,pH=7.最终COD去除率可达44.5%,色度可以降为35倍,出水符合国家污水排放二级标准.同时,通过分析分子量分布和小分子有机物组成,揭示了Fenton氧化/混凝协同处理焦化废水生物出水的污染物变化规律.结果表明焦化废水经过Fenton氧化/混凝协同处理后,其出水可达到国家二级排放标准,并且处理成本相对较低,具有实际应用的前景.  相似文献   

18.
超临界水氧化技术及其在废水处理中的应用   总被引:6,自引:0,他引:6  
论述了超临界水及氧化法的特点、氧化机理,介绍了SCWO法工艺流程,并作了处理成本分析。着重阐述了SCWO法在废水处理中的应用,最后对其应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号