首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of cadmium on nutrient uptake and translocation by Indian Mustard   总被引:3,自引:0,他引:3  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10-190 mg Cd kg(-1) to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg(-1) dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg(-1) d.w. in the roots and 160 mg kg(-1) d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg(-1), and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg(-1), then remained constant with Cd treatments from 110 to 190 mg kg(-1). However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

2.
The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise,4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, availablephosphate and extractable calcium, magnesium and potassium contents, and heavy metal contentssuch as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The studyshowed that the average contents of organic matter, available phosphate, and extractable potassiumrapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, andonly 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils(0–15 cm depth) were 0.11 mg kg–1(ranged from 0 to 1.01), 4.70 mg kg–1(0–41.59), 4.84 mg kg–1(0–66.44), and 4.47 mg kg–1(0–96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn,and As in surface soils (0–15 cm depth) were 0.135 mg kg–1(ranged from 0 to 0.660), 2.77 mg kg–1(0.07–78.24), 3.47 mg kg–1(0–43.00), 10.70 mg kg–1(0.30–65.10), and 0.57 mg kg–1(0.21–2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg–1(ranging from 0 to 1.28), 4.82 mg kg–1(0–46.50), 2.68 mg kg–1(0–46.50), 31.19 mg kg–1(0.19–252.0), and 0.36 mg kg–1(0–4.98), respectively. In orchard fields, the averagecontents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0–20 cm depth) were 0.11 mg kg–1(ranged from 0–0.49), 3.62 mg kg–1(0.03–45.30), 2.30 mg kg–1(0–27.80), 16.60 mg kg–1(0.33–105.50),0.44 mg kg–1(0–4.14), and 0.05 mg kg–1(0.01–0.54), respectively. For polluted soils with over thewarning content levels of heavy metals, fine red earth application, land reconsolidation and soilamelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; landreformation; and heavy application of finered earth (up to 30 cm) were strongly recommended. Landuse techniques should be changed to beharmonious with the environment to increase yield andincome. Soil function characteristics should betaken into account.  相似文献   

3.
Previous research has demonstrated that many urban soils are enriched in Pb, Cd and Zn. Culture of vegetable crops in these soils could allow transfer of potentially toxic metals to foods. Tanya lettuce (Lactuca sativa L.) was grown in pots of five urban garden soils and one control agricultural soil to assess the effect of urban-soil metal enrichment, and the effect of soil amendments, on heavy metal uptake by garden vegetables. The amendments included NPK fertilizer, limestone, Ca(H2PO4)2, and two rates of limed sewage sludge compost. Soil Cd ranged from 0.08 to 9.6 mg kg–1; soil Zn from 38 to 3490 mg kg–1; and soil Pb from 12 to 5210 mg kg–1. Lettuce yield on the urban garden soils was as great as or greater than that on the control soil. Lettuce Cd, Zn and Pb concentrations increased from 0.65, 23, and 2.2 mg kg–1 dry matter in the control soil to as high as 3.53, 422 and 37.0 mg kg–1 on the metal-rich urban garden soils. Adding limestone or limed sewage sludge compost raised soil pH and significantly reduced lettuce Cd and Zn, while phosphate fertilizer lowered soil pH and had little effect on Zn but increased Cd concentration in lettuce. Urban garden soils caused a significant increase in lettuce leaf Pb concentration, especially on the highest Pb soil. Adding NPK fertilizer, phosphate, or sludge compost to two high Pb soils lowered lettuce Pb concentration, but adding limestone generally did not. On normally fertilized soils, Pb uptake by lettuce was not exceptionally high until soil Pb substantially exceeded 500 mg kg–1. Comparing garden vegetables and soil as potential sources of Pb risk to children, it is clear that the risk is greater through ingestion of soil or dust than through ingestion of garden vegetables grown on the soil. Urban dwellers should obtain soil metal analyses before selecting garden locations to reduce Pb risk to their children.  相似文献   

4.
In order to assess the potential of As and heavy metal contamination derived from past mining activity and to estimate the human bioavailability quotients for As and heavy metals. Tailings, soils and crop samples were collected and analysed for As, Cd, Cu, Pb and Zn. The mean concentrations of As, Cd, Cu, Pb and Zn in the tailings were 68.5, 7.8, 99, 3,754 and 733 µg g–1, respectively. Maximum Pb concentration in tailings was up to 90 times higher than its tolerable level. The concentrations of these metals were highest in the soils from the dressing plant area, and decreased in the order: farmland soil to paddy soil. In particular, some of the soils from the dressing plant area contained more than 1% of Pb and Zn. The pollution index ranged from 0.19 to 1.93 in paddy soils, and from 1.47 to 3.60 in farmland soils. The average concentrations of heavy metals in crops collected from farmland were higher than those in rice stalks or rice grains, and higher than the internationally accepted limits for vegetables. Element concentrations extracted from farmland soils within the simulated human stomach for 1 h are 9.4 mg kg–1 As, 3.8 mg kg–1 Cd, 37 mg kg–1 Cu, 250 mg kg–1 Pb and 301 mg kg–1 Zn. In particular, the extracted concentrations of Cd, Pb and Zn are in excess of the tolerable levels. The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion (by inhalation and from dirty hands) of soils by the local population could pose a potential health threat due to long-term toxic element exposure.  相似文献   

5.
茄子苗对镉积累和耐性的品种间差异   总被引:1,自引:0,他引:1  
通过盆栽实验方法研究了13种茄子幼苗对镉(Cd)积累与耐性的品种间差异。结果表明,这些茄子幼苗根及地上部Cd含量均随土壤中外加Cd的量的增加而提高。品种间存在着显著差异(P<0.05),其中Cd含量最高品种根部和地上部的Cd含量分别为Cd含量最低品种的2.1、2.4倍(2mg·kg-1Cd处理组)和1.5、1.6倍(4mg·kg-1Cd处理组)。不同品种幼苗对Cd的富集系数均大于1,表现出较强的富集能力。但转运系数均小于1,Cd从根部向地上部转移能力较弱,大多数品种间差异不大。当Cd添加量为2mg·kg-1时,只有绿龙长茄地上部生物量显著下降(P<0.05)。当Cd添加量提高到4mg·kg-1时,6个品种地上部生物量显著下降(P<0.05),这些品种对Cd的耐性较弱。综合评价,辽茄三号对Cd积累的含量最低,富集系数和转移系数也较低,对Cd具有较强的耐性,具有Cd低积累特征。  相似文献   

6.
Kidney stones (urinary calculi) have become a global scourge since it has been recognized as one of the most painful medical problems. Primary causative factors for the formation of these stones are not clearly understood, though they are suspected to have a direct relationship to the composition of urine, which is mainly governed by diet and drinking water. Sixty nine urinary calculi samples which were collected from stone removal surgeries were analyzed chemically for their Na, K, Ca, Mg, Cu, Zn, Pb, Fe and phosphate contents. Structural and mineralogical properties of stones were studied by XRD and FT-IR methods. The mean contents of trace elements were 1348 mg kg−1 (Na); 294 mg kg−1 (K); 32% (Ca); 1426 mg kg−1 (Mg); 8.39 mg kg−1 (Mn); 258 mg kg−1 (Fe); 67 mg kg−1 (Cu); 675 mg kg−1 (Zn); 69 mg kg−1 (Pb); and 1.93% (PO43−). The major crystalline constituent in the calculi of Sri Lanka is calcium oxalate monohydrate. Principal component analysis was used to identify the multi element relationships in kidney stones. Three components were extracted and the first component represents positively correlated Na-K-Mg-PO43− whereas the␣second components represent the larger positively weighted Fe–Cu–Pb. Ca–Zn correlated positively in the third component in which Mn–Cu correlated negatively. This study indicates that during the crystallization of human urinary stones, Ca shows more affinity towards oxalates whereas other alkali and alkaline earths precipitate with phosphates.Contribution from the Environmental Geology Research Group (EGRG), Department of Geology, University of Peradeniya, Sri Lanka.  相似文献   

7.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

8.
The concentrations of four essential (Ca, Mg, Zn, and Cu) and two nonessential elements (Pb and Cd) in feathers and kidneys, livers, gut walls, and muscles of eight carcasses of migratory red-crowned cranes (Grus japonensis) from Zhalong Wetland, northeastern China, were examined. The concentrations of Cd in the feathers were between 0.4 mg kg?1 dry weight (dw) and 3.1 mg kg?1 dw, in the livers between 0.4 and 4.4 mg kg?1 dw, the maximum of which exceeded a level considered to be environmental exposure risk (i.e., 3 mg kg?1 dw in the liver or kidney). High Pb levels (0.4–3.2 mg kg?1 dw, with an average of 1.8 mg kg?1) were also detected in livers, which exceeded a level considered toxicosis in birds (1.7 mg kg?1 dw). Pb and Cd had the highest scores in principal component analysis. Relatively high Pb and Cd concentrations in the migratory cranes were thought to be associated with their habitat and prey.  相似文献   

9.
The results are presented of studies on the content of Zn, Pb, Cu, Ni and Cd inPleurozium schreberi moss within the spatial system of Kampinos National Park (KPN) adjacent to the Warsaw urban agglomeration. Over a large area (64.3–78.3%) of the Park, mosses contain the following amounts of metals in mg kg–1 dw: 80–120 of Zn, 60–80 of Pb, 10–15 of Cu, 4–8 of Ni and 0.6–0.9 of Cd. All trace metals were found to accumulate in elevated amounts in moss in the south-eastern portion of the Park bordering the urban area, and it is this part of the Park that should be considered as most polluted by heavy metals.  相似文献   

10.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

11.
The artificially high soil cadmium (Cd) concentration screening method was used to screen Cd-hyperaccumulators from floricultural plants. Among the five species of floricultural plants screened, Cosmos bipinnata showed the characteristics of Cd-accumulators. A pot experiment was conducted to further study Cd accumulation characteristics of C. bipinnata. The results showed that the biomass, chlorophyll content, superoxide dismutase activity, peroxidase activity and soluble protein content of C. bipinnata first increased and later decreased with the increase in soil Cd concentration, but the carotenoid content and catalase activity of C. bipinnata reduced. Cd contents in roots, stems, leaves and shoots of C. bipinnata increased with increasing soil Cd concentration. When the soil Cd concentration was 50?mg?kg?1, the Cd content in shoots was up to 112.62?mg?kg?1, which was higher than the Cd-hyperaccumulator critical value. The root and shoot bioconcentration factors exceeded 1 in various Cd treatments, but the translocation factors were less than 1. When the soil Cd concentration was 50?mg?kg?1, the Cd accumulation in shoots achieved the maximum of 224.30?μg plant?1. Therefore, considering the tolerance and accumulation of Cd, C. bipinnata is a Cd-accumulator that could be used to remediate Cd-contaminated urban soil.  相似文献   

12.
The solution culture, paddy soil culture and the simulation experiments in the laboratory were conducted to clarify the interactions between selenium and phosphorus, and its effects on the growth and selenium accumulation in rice. Results revealed that a suitable supply of selenium could promote rice growth and excessive selenium could injure rice plant, causing lower biomass, especially in the roots. The supply of selenite could enhance the selenium contents of rice shoots and roots in solution culture and in soil culture. The selenium concentrations in roots were much higher than those in shoots supplied with the same rates of selenium and phosphorus. The interaction between selenium and phosphorus was evident. When the phosphorus supply increased to meet the needs of plant growth, phosphorus could promote absorption and accumulation of selenium in the shoots. If the phosphorus supply was excessive, phosphorus could inhibit the accumulation of selenium in the shoots at the lower selenite level (2 mol l–1), but could not at the higher selenite level (10 mol l–1). With the supply of phosphate increased, the selenium concentrations in the roots decreased significantly at both selenite levels. The presence of phosphate could decrease Se sorption on the soil surface and increase the selenium concentration in the soil solution. The concentrations of selenium in shoots and roots supplied with 0.08 g kg–1 phosphorus were lower than those with no phosphorus supplied. With the increase of phosphorus added to 0.4 g kg–1, the selenium concentration in shoots and roots increased. The effect of phosphorus on the concentration was statistically significant at all three selenium levels.  相似文献   

13.
The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg−1) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg−1, from 1,130 to 3,830 mg K kg−1, from 61.8 to 488 mg Ca kg−1, from 864 to 2,020 mg Mg kg−1, from 0.40 to 147 mg Fe kg−1, from 15.1 to 124 mg Zn kg−1, from 0.10 to 59.1 mg Cu kg−1, and from 6.7 to 26.6 mg Mn kg−1. Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.  相似文献   

14.
Cadmium contents of cultivated soils exposed to contamination in Poland   总被引:2,自引:0,他引:2  
Cadmium was measured in soils limed with industrial solid wastes, in cultivated lands located near waste yards and in soils of allotment gardens exposed to contamination. The median level and range of cadmium in soils of varying exposure to contamination was respectively: 0.3 mg kg–1 and 0.01–107 mg kg–1, 0.2 mg kg–1 and 0.02–2,198 mg kg–1, 0.4 mg kg–1 and 0.05–161 mg kg 1. Cadmium levels exceeded the value of 3 mg kg–1 considered permissible for arable soils in the samples of soils limed with wastes from the chemical industry (2.4%), the mining industry and metallurgy sites (2.1 %), in 12.4% samples of soils located in the neighbourhood of industrial waste storage yards and in 17.2% samples of soils from allotment gardens located on lands formerly used for waste storage.  相似文献   

15.
The heavy metal content in sewage sludges from a big Chinese city was investigated. Concentrations of zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), cadmium (Cd) and mercury (Hg) in the sludges were 258–4050 mg kg‐1, bd: 994 mgkg‐1, 8.3–566 mg kg‐1, 26.3–370mgkg‐1 4.2–113 mg kg‐1 0.9–6.4 mg kg‐1 and 1.8–12.4 mg kg‐1 respectively. The concentrations of Zn and Pb in the sewage sludges from the residential areas were higher than those in the mixed ones (from both residential and industrial areas). The concentrations of heavy metals in the flocculently dewatered sewage sludges were higher than those in the sediment of the centrifuged undewatered sewage sludges. After centrifuging, more than 60% of heavy metals remained in the sludge sediment with an exception of Cd. The content of organic matter, total phosphorus (T‐P) and total potassium (T‐K) in these sewage sludges was also measured.  相似文献   

16.
The aim of the study was to estimate Zn phytoextraction and changes in biomass of S?×?rubens growing in modified Knop's solution with different levels of Zn addition (0.5, 1.0, 2.5 and 5.0?mM). Obtained results were correlated with secretion of selected low-molecular-weight organic acids (LMWOAs) in the rhizosphere, roots and leaves. An increase in Zn concentration in Knop's solution resulted in Zn accumulation in roots, shoots and leaves. The highest accumulation was observed for plants growing in 5?mM Zn, at concentration levels 4741.36?±?98.66, 1227.31?±?16.57 and 2241.65?±?34.90?mg?kg?1 DW in roots, shoots and leaves, respectively. The bioaccumulation factor and the translocation factor for plants growing in 0.5, 1.0 and 2.5?mM Zn clearly indicate that this Salix taxon is an effective Zn accumulator. The general reduction of Salix biomass with an increase in Zn concentration in the solution was observed. In the rhizosphere, the total LMWOA concentration was almost 0.93?µmol?kg?1 DM for control (Zn free) plants, while for 5.0?mM of Zn it was 4.9?µmol?kg?1 DM. Increasing concentrations of acids were observed in roots (1.34 for the control and 5.57?µmol?kg?1 DM for plants treated with 2.5?mM of Zn).  相似文献   

17.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

18.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

19.
The atmospheric particulates from the Caracus Valley in Venezuela and the fluvial particulates transported by the Tuy River into the Caribbean sea have been evaluated for Pb, Cu and Zn with the purpose of determining the contamination levels in the study area. The atmospheric particulate samples were collected in the city of Caracas using a low volume sampler whereas the fluvial particulate were collected at the mouth of the Tuy River. The particulate samples were analysed by flame or graphite furnace atomic absorption spectrometry depending upon the concentration levels of the heavy metal under study. The results obtained for the fluvial particulates enabled estimates to be made of the total anthropogenic flux of Cu (383 ton year–1), Pb (528 ton year–1) and Zn (865 ton year–1). These results yield annual per capita inputs for Cu (96 g),Pb (132 g) and Zn (216 g) which greatly exceed those from global anthropogenic emissions. The weighted average concentration of Pb (1.13 %) found in the atmospheric particulates was much higher than those for Cu (140 mg kg–1) and Zn (200 mg kg–1) and reflects the high motor car traffic in the Caracas Valley. The anthropogenic/natural ratios estimated in this study were as follows: 2.6 for Pb; 1.5 for Cu and 1.5 for Zn. This indicates that anthropogenic inputs for Cu, Pb, and Zn in the study area exceed those from natural sources, cars being the major source for Pb and industrial activities the major sources for Cu and Zn.  相似文献   

20.
The decapod crustacean Penaeus indicus accumulated Cd and Zn in different subcellular compartments of hepatopancreas and gill cells. Most of the Cd and part of the Zn accumulates within the soluble fraction of the cells, while the remainder of the Zn is found in insoluble inclusions, associated with P, Ca, Mg and Si in B-, F- and R-cells in the hepatopancreas, and haemocytes, nephrocytes and epithelial cells in the gills. No presence of Cd was observed in metal-rich inclusions in any cell analysed. Metallothionein-like proteins (MTLP), analysed by differential pulse polarography, were present in the hepatopancreas (12–18 mg g−1) and gills (7–8 mg g−1) of metal-exposed prawns. Binding to MTLP is the detoxification mechanism for cadmium, while the detoxification of zinc involves both binding to MTLP and incorporation into insoluble metal-rich inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号