首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between somatic growth and incremental growth of otoliths of Pacific saury, Cololabis saira (Brevoort), larvae under different temperature conditions was studied in the laboratory for three age groups (0 to 9, 10 to 20 and 20 to 30 d posthatch). Larvae were incubated from hatching to 9 d at 24, 20, and 16 °C. Further, larvae initially reared at an ambient temperature of 21.7 °C were transferred to experimental temperatures of 22, 18, and 14 °C on Day 10 and reared to Day 20 and similarly from Day 20 and reared to Day 30 posthatch. Growth trajectories of larvae sampled at the end of the three experiments were back-calculated using the biological intercept method and compared to the measured values 0 and 5 d after the start of each experiment. Back-calculated knob length at the different temperatures indicated no significant difference to the measured knob lengths except for the cases at 20 °C from hatching to 9-d-old larvae and at 14 °C from 20- to 30-d-old larvae. The close correlation between somatic and otolith growth shown in this study indicated the feasibility of estimating the growth history of Pacific saury larvae using otolith readings. Received: 14 April 1999 / Accepted: 27 October 1999  相似文献   

2.
Cod (Gadus morhua L.) eggs may develop and hatch within temperatures of −1.5 to 12 °C, but little is known about the effects of very low temperatures on larval characteristics. Eggs of the Northeast Arctic cod (Gadus morhua) were incubated at 1, 5 or 8 °C from Day 1 after fertilisation until hatching, and transferred to 5 °C after hatching. Histological samples of the axial musculature were taken at hatching and 5 d after hatching, and the data on muscle cellularity from these samples were related to survival and hatching, size, developmental data and viability of the yolk sac larvae. All larvae hatched at the same developmental stage. Incubation of eggs at 1 °C produced shorter larvae with a larger yolk sac and more, small deep fibres at hatching than larvae from eggs incubated at 5 or 8 °C. The larval size difference was still present 5 d after hatching, a time at which the larvae from 1 °C-incubated eggs were less developed and less resistant to an acute viability stress test (65 ppt salinity). Although there were no differences between temperature groups in number and size of muscle fibres 5 d after hatching, the deep fibres of the 1 °C-group contained less myofibrils than the two other groups. The phenotype of the larvae at hatching was thus affected within these incubation temperatures. Although all groups were transferred to the same temperature after hatching, the lowest egg incubation temperature (1 °C) still had a negative effect 5 d after hatching, as these larvae were both smaller, less resistant to stress and had less functional muscles at the time of first feeding. Our conclusion is therefore that 1 °C is close to, or below, the lower thermal tolerance limit for normal functional development of Northeast Arctic cod. The results are discussed in relation to larval viability and recruitment of this species in the wild. Received: 4 February 1998 / Accepted: 10 July 1998  相似文献   

3.
Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 μatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2—at beyond near-future ocean acidification levels—affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious.  相似文献   

4.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

5.
Herring (Clupea harengus L.) larvae from spring and autumn spawning stocks were reared at different constant temperatures from 5° to 17 °C. At equivalent developmental stages, the spring larvae were longer than the autumn larvae and the larvae reared at low temperatures were longer than those reared at high temperatures. At hatching and at the end of the yolk-sac stage, the larvae were induced, by a probe, to make C-start escape responses, which were recorded and analysed using a high-speed video recording at 400 frames s-1. The response was rapid and of short duration. The tailbeat frequency and swimming speed were measured during the burst of swimming following the C-start at different test temperatures and in larvae with different temperature histories. The tail-beat frequency was strongly temperature-dependent, rising from 19 Hz at 5 °C to 37 Hz at 17 °C with no effect of temperature history, season or developmental stage. The burst-swimming speed ranged at hatching from 75 to 90 mm s-1 at 5 °C to 110 to 160 mm s-1 at 17 °C and at yolk resorption from 90–115 mm s-1 at 5 °C to 175–190 mm s-1 at 17 °C. The longer, spring-spawned larvae swam faster than the shorter autumn-spawned larvae. When the swimming speeds were expressed as body lengths (L) s-1, these differences disappeared. Larvae swam from 7–9 L s-1 at 5 °C to 15–20 L s-1 at 17 °C at hatching, and from 8–9 L s-1 at 5 °C to 15–17 L s-1 at 17 °C at yolk resorption. There was, however, a significantly faster specific swimming speed by the larvae reared at 12 °C in spring 1991.Honorary Research Fellow of the Scottish Association for Marine ScienceUnfortunately, Karen Fretwell was drowned in an accident on 9 January 1993  相似文献   

6.
The use of the egg production rate of herbivorous copepods as an important parameter for understanding population dynamics and as an index of secondary production requires knowledge of the regulatory mechanisms involved and of the response to changes in food concentrations and temperature. Furthermore, the effects of season and generation on egg production have to be studied. In this context data are presented for Calanus finmarchicus from the northern North Atlantic. Prefed and prestarved females were exposed to different concentrations of the diatom Thalassiosira antarctica over 1 to 2 wk at 0 or 5 °C, and egg deposition was controlled daily. Egg production increased with higher food concentrations, but much less when prestarved. The effect of temperatures between −1.5 and 8 °C on egg production was studied in females maintained at optimum feeding conditions. Egg production rate increased exponentially over the whole temperature range by a factor of 5.2, from 14.2 to 73.4 eggs female−1 d−1, and carbon-specific egg production by 4, from 2.1 to 8.5% body C d−1. The response to starvation was also temperature dependent. In both the temperature and feeding experiments egg production rate was regulated mainly by changes of the spawning interval, while changes of clutch size were independent of experimental conditions. Different responses to optimum feeding conditions were observed in females collected in monthly intervals on three occasions between March and May. The March females deposited more clutches than the April and May females. In May, >50% of the females did not spawn at all. Maximum egg production rates were never >25% of the rate expected at 5 °C, indicating endogenous control of egg production in addition to food and temperature effects. Received: 4 August 1996 / Accepted: 11 September 1996  相似文献   

7.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

8.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

9.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

10.
Six Pacific bluefin tuna were tracked with ultrasonic telemetry and two with pop-up satellite archival tags (PSATs) in the eastern Pacific Ocean in 1997, 1998, and 1999. Both pressure and temperature ultrasonic transmitters were used to examine the behavior of the 2- to 4-year-old bluefin tuna. The bluefin spent over 80% of their time in the top 40 m of the water column and made occasional dives into deeper, cooler water. The mean slow-oxidative muscle temperatures of three fish instrumented with pressure and temperature transmitters were 22.0–26.1 °C in water temperatures that averaged 15.7–17.5 °C. The thermal excesses in slow-oxidative muscle averaged 6.2–8.6 °C. Variation in the temperature of the slow-oxidative muscle in the bluefin was not correlated with water temperature or swimming speeds. For comparison with the acoustic tracking data we examined the depth and ambient temperature of two Pacific bluefin tagged with pop-up satellite archival tags for 24 and 52 days. The PSAT data sets show depth and temperature distributions of the bluefin tuna similar to the acoustic data set. Swimming speeds calculated from horizontal distances with the acoustic data indicate the fish mean speeds were 1.1–1.4 fork lengths/s (FL s−1). These Pacific bluefin spent the majority of their time in the top parts of the water column in the eastern Pacific Ocean in a pattern similar to that observed for yellowfin tuna. Received: 4 April 2000 / Accepted: 25 October 2000  相似文献   

11.
The behavioral responses of fishes to temperature variation have received less attention than physiological responses, despite their direct implications for predator–prey dynamics in aquatic ecosystems. In this paper, we describe the temperature dependence of swimming performance and behavioral characteristics of juvenile Pacific cod (Gadus macrocephalus; 75–125 mm total length). Maximum swimming speeds increased with temperature and body size. Routine swimming speeds of Pacific cod in small groups of similarly sized fish (N = 6) increased with body size and were 34 % faster at 9 °C than at 2 °C. The response to temperature was opposite that previously described for juvenile walleye pollock (Theragra chalcogramma), reflecting species-specific differences in behavioral responses. In a separate experiment, we demonstrated the effect of temperature on habitat selection of juvenile Pacific cod: Use of an artificial eelgrass patch in a 5-m-long laboratory tank was significantly greater at 9 °C than at 2 °C. These results illustrate that temperature affects a range of behavioral traits that play important roles in determining the frequency and outcomes of predator–prey interactions.  相似文献   

12.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

13.
A series of laboratory (short-term exposure in small beakers) studies and a 19 d mesocosm (6 m3 polyethylene bags filled with fjord water) study were conducted on blue mussel, Mytilus edulis, larvae and plantigrades exposed to a concentration gradient of the detergent linear alkylbenzene sulphonate (LAS, 0 to 39 mg l−1). LAS is increasingly found in nearshore environments receiving wastewater from urban treatment plants. The aims were to observe physiological effects on swimming, grazing and growth in the laboratory and effects on settling and population development at in situ conditions (in field mesocosms) in order to evaluate the damages on ciliated meroplankton caused by LAS. In the laboratory the larvae showed a 50% mortality at 3.8 mg LAS l−1 after 96 h exposure whether or not food was provided. Additionally the swimming behaviour was affected at 0.8 mg LAS l−1 (i.e. a more compact swimming track, a smaller diameter of the swimming tracks, and reduced swimming speed). The larval particle grazing was reduced 50% at 1.4 mg LAS l−1. The specific growth rate of the larvae was reduced to half at 0.82 mg LAS l−1 over 9 d. During the mesocosm experiment, the larval population showed a dramatic decrease in abundance within 2 d at concentrations as low as 0.08 mg LAS l−1, both due to a significantly increased mortality, but also due to settling. The settling success was reduced at the same LAS concentration as that at which mortality was observed to increase significantly. In addition to reduced settling rate, the larvae showed delayed metamorphosis and reduced shell growth as a response to LAS. Our hypothesis that the larval ciliary apparatus, crucial for normal swimming, orientation, and settling behaviours and for particle uptake, was damaged due to LAS exposure is supported by our results. This is confirmed by the physiological data (grazing, growth) and in the direct video-based observations of larval performance (swimming) and provides a reasonable explanation for what was observed in the bags (abundance, settling, mortality). These physiological effects on blue mussel larvae/plantigrades occurred at LAS concentrations reported to occur in estuarine waters. Received: 15 January 1997 / Accepted: 12 February 1997  相似文献   

14.
S. Mariani  M.-J. Uriz  X. Turon 《Marine Biology》2000,137(5-6):783-790
 We performed an intensive year-round sampling with the aim of studying the abundance of sponge larvae in four Mediterranean benthic communities: photophilic algae, sciaphilous algae, semi-obscure (i.e. low light-intensity) caves and sandy bottoms. We record here for the first time, a larval bloom of Cliona viridis (Schmidt 1862), the most common excavating sponge in the Mediterranean, which took place simultaneously in several rocky communities of the Blanes sub-littoral (NE Spain), and discuss the role of restricted larval dispersal in the distribution of adult sponges. In the communities studied, C. viridis larvae bloomed synchronously once, in June. Spawning and consequent embryo development presumably occurred in May, when water temperature was 16 °C. The free larva is a small, evenly ciliated, weakly swimming parenchymella with low dispersal capabilities. The number of larvae m−3 and sponge abundance (as percent cover and biomass) were significantly higher in the community of sciaphilous algae than in the other communities studied. Because of limited larval dispersal, larval and adult abundance in the communities were positively correlated. Larvae developed into juvenile sponges 10 to 15 d after settlement. Settlers displayed distinctive features: a peripheral cuticle, vacuolar etching-like cells at the sponge base, absence of oscular chimneys, and the presence of zooxanthellae, which were presumably transmitted during oocyte maturation. Received: 24 January 2000 / Accepted: 4 July 2000  相似文献   

15.
I. Imai  S. Itakura 《Marine Biology》1999,133(4):755-762
To elucidate roles of cysts in occurrences of Heterosigma akashiwo blooms, cyst dynamics were studied in northern Hiroshima Bay, the Seto Inland Sea of Japan, where H. akashiwo regularly forms red tide in June. Monthly measurements of seasonal changes in the densities of vegetative cells of H. akashiwo and their germinable cysts in surface sediments (top 1-cm layer) were made for 2 years at three stations. Vegetative cells of H. akashiwo could be detected from April through December throughout the water column, and the existence of vegetative cells was confirmed in surface waters even in winter after incubation of sampled seawater in culture medium. Germinable cysts, enumerated by the extinction dilution method, existed in sediments in all seasons, even before and after the seasonal bloom. The effects of incubation temperature on the germination of natural cysts of H. akashiwo in sediments were examined. Germination was not observed at 5 °C, was low at 10 °C, while it increased at 15 °C, and maintained a high level to 25 °C. The bottom water temperature reached 15 °C (suitable for the germination of cysts) and the surface about 18 °C or more (suitable for the growth of vegetative cells) 2 to 3 weeks before the blooms. The dark survival of H. akashiwo cysts was tested, and it was found that the cysts were viable for at least 650 d at 11 °C, and for 165 d at 25 °C, indicating a significant role of cysts in the survival during winter and summer seasons. The cysts presumably also play an important role in seeding primary populations into water columns when the bottom water reaches a suitable temperature (around 15 °C); thereafter the populations develop with great annual regularity to bloom in June. These results suggest that initiation of H. akashiwo red tides in the Seto Inland Sea could be triggered by bottom water temperature. Received: 3 July 1998 / Accepted: 12 January 1999  相似文献   

16.
Cephalopod mollusks exhibit highly plastic life cycle traits influenced primarily by the interactive effects of food availability, light cycle and temperature, with the latter perhaps the most influential. Hatchlings of the tropical reef squid Sepioteuthis lessoniana were hatched from field-collected eggs in the laboratory and cultured at different temperatures to evaluate the effect of temperature on growth rates. All groups showed rapid, sustained growth rates from hatching to a size of 10–25 g. Beyond this size range, growth was slower and not clearly exponential in form. Growth rate was closely linked to temperature. Squids grown at approximately 27 °C attained a size of 10 g in as little as 45 days at sustained growth rates of 12.2% body weight day−1 (%bw day−1), while squids cultured at 20 °C required almost 100 days to attain the same size at rates of 5.7%bw day−1. At an age of 55 days and approximately 1 g body weight, juvenile squids cultured at 20 °C were able to accelerate growth rates from 5.7%bw day−1 to over 12%bw day−1 when temperature was raised to 27 °C. They maintained this growth rate to a size of about 10 g and an age of at least 75 days post-hatching, indicating that body size and not age is the limiting factor for this rapid post-hatching growth. By comparison, conspecifics cultured near 27 °C from hatching had shifted out of the rapid post-hatching growth phase by day 50 at sizes between 10 and 50 g. The hatchlings from temperate to subtropical Japan had consistently higher growth rates at comparable temperatures than hatchlings from tropical Okinawa. When plotted as growth rate versus temperature, the Japanese group had a clearly higher slope to the relationship than the tropical populations, equivalent to a 2%bw day−1 difference in growth rate at 25 °C. Age at first egg-laying was decreased at higher culture temperatures; however, overall life span was not. Received: 21 February 2000 / Accepted: 6 September 2000  相似文献   

17.
O. Tully  V. O'Donovan  D. Fletcher 《Marine Biology》2000,137(5-6):1031-1040
 The accumulation of lipofuscin, which is an indictor of physiological age, in the brain of juvenile European lobster (Homarus gammarus L.) was monitored for 22 mo in three experimental temperature regimes that simulated seasonal variation in temperature in the geographic range of this species. Metabolic rate responses to changes in temperature were estimated by measuring the activity of the electron transport system (ETS) in muscle tissue and in vivo rates of oxygen consumption. Lipofuscin accumulation oscillated with simulated seasonal changes in temperature and was described by seasonalised von Bertalanffy growth functions. The incremental accumulation in lipofuscin between sampling dates was linearly related to the number of degree days that accumulated between dates, irrespective of the amplitude of temperature fluctuation that had occurred. ETS activity increased with acclimation temperature and was modelled using a polynomial function. This indicated a lower temperature sensitivity in the temperature mid-range (12 to 16 °C), although the Q10 for this mid-range was 2.1. ETS activity in lobsters acclimated to 8 and 18 °C and assayed at 13 °C was similar, indicating no compensation for changes in environmental temperature. Oxygen consumption rate was significantly higher at 14 °C than at 10.5 °C and had a Q10 of 3.6, again suggesting no compensation to temperature change. The absence of metabolic compensation in response to temperature change in H. gammarus is consistent with the predictability of changes in temperature and food availability in the sub-littoral environment of this species. As lipofuscin accumulates according to metabolic rate, and metabolic rate in H. gammarus is directly correlated with temperature, geographic differences and long-term temporal trends in temperature will need to be considered when converting physiological age indices, obtained from lipofuscin estimates, to a chronological scale. Received: 27 April 2000 / Accepted: 21 July 2000  相似文献   

18.
We used acoustic telemetry to examine the small-scale movement patterns of yellowfin tuna (Thunnus albacares) in the California Bight at the northern extent of their range. Oceanographic profiles of temperature, oxygen, currents and fluorometry were used to determine the relationship between movements and environmental features. Three yellowfin tuna (8 to 16 kg) were tracked for 2 to 3 d. All three fish spent the majority of their time above the thermocline (18 to 45 m in depth) in water temperatures >17.5 °C. In the California Bight, yellowfin tuna have a limited vertical distribution due to the restriction imposed by temperature. The three fish made periodic short dives below the thermocline (60 to 80 m), encountering cooler temperatures (>11 °C). When swimming in northern latitudes, the depth of the mixed layer largely defines the spatial distribution of yellowfin tuna within the water column. Yellowfin prefer to spend most of their time just above the top of the thermocline. Oxygen profiles indicated that the tunas encountered oceanic water masses that ranged most often from 6.8 to 8.6 mg O2 l−1, indicating no limitation due to oxygen concentrations. The yellowfin tuna traveled at speeds ranging from 0.46 to 0.90 m s−1 (0.9 to 1.8 knots h−1) and frequently exhibited an oscillatory diving pattern previously suggested to be a possible strategy for conserving energy during swimming. Received: 14 February 1997 / Accepted: 14 April 1997  相似文献   

19.
 The nature of heat coma was examined in the edible periwinkle Littorina littorea (L.). Duration of acclimation did not influence heat-coma temperature at 12 °C, although other acclimation temperatures were important in influencing thermal tolerance, with positive shifts in coma temperature observed in response to elevated temperatures. Previous thermal history also influenced heat-coma temperatures. Individuals subjected to repeat heat-coma events on a daily basis showed significant declines (P < 0.05) in coma-temperature; in contrast individuals exposed to repeat heat-coma events on a weekly basis showed no decline in thermal tolerance. Size-effects occurred at selected sites, where decreased heat-coma temperatures were recorded in large individuals. Received: 16 August 1999 / Accepted: 13 June 2000  相似文献   

20.
Previous studies have shown that large numbers of ciliated and nonciliated epithelial cells (diam.: 6 to 15 μm) are released by adult sea scallops, Placopecten magellanicus (Gmelin), during summer months in Newfoundland when water temperatures are at a maximum and gonads are well developed. Such exfoliation of cells could be a response to stresses associated with elevated water temperatures and/or spawning activity. In the present study an electronic particle counter/sizer was used to further investigate the factors that influence exfoliation of epithelial cells by juvenile and adult scallops throughout the year. We observed release of epithelial cells from juveniles, and from adults collected in months when gametogenic activity was minimal, indicating that exfoliation does not occur as a result of reproductive activity alone. SEM analysis revealed little difference in surface characteristics of the gills, mantle and gonad between scallops that had released cells and those that had not, suggesting that exfoliation of small numbers of cells may be a consequence of cellular turnover and normal physiological function. Adult scallops were monitored in a second experiment to determine the effects of raising water temperatures from 8.5 to 14.7 and to 21.0 °C on the frequency (proportion) and rate of cellular exfoliation. Only at the highest experimental temperature (21.0 °C) were exfoliation rates significantly higher than rates recorded at 8.5 or 14.7 °C. SEM analyses revealed some damage to gill, mantle and gonad tissues when scallops were exposed to 14.7 and then to 21.0 °C for a total of 8 d. Received: 21 August 1996 / Accepted: 13 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号