首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
From 1998 to 2001 a total of 200 Ommastrephes bartramii (27 paralarvae) and 170 Sthenoteuthis oualaniensis (14 paralarvae) were sampled from the Central North Pacific. One group of non-paralarval O. bartramii (n = 30) was sampled from farther northwest in 1996. The δ15N of mantle muscle of non-paralarval O. bartramii ( = 12.4‰) was significantly greater than that of non-parlarval S. oualaniensis ( = 8.1‰) (P < 0.001). The δ15N of whole paralarvae of O. bartramii ( = 6.4‰) was not significantly different than parlarvalae of S. oualaniensis ( = 6.1‰) (P = 0.528). There was no significant difference between the mantle muscle δ15N values of male (n = 95, = 13.3‰) and female (n = 18, = 12.9 ‰) O. bartramii greater than 300 mm mantle length (ML) (P = 0.15). There was also no significant difference between the mantle muscle δ15N values of male (n = 15, = 7.2‰) and female (n = 26, = 7.3 ‰) S. oualaniensis in the same size range (P = 0.41). Overall there was a distinct logistic increase in δ15N with mantle length for O. bartramii, whereas S. oualaniensis showed an exponential increase in δ15N with mantle length that was stronger within individual years than with all samples combined. In general, adult O. bartramii are more than a trophic level above S. oualaniensis (4.3‰, 1.3 TLs). Because of the nature of the sampling protocol, this study could not separate spatial and temporal effects on the δ15N signals from each squid species. This study demonstrates the ability of stable isotope analyses to differentiate trophic levels between squid species as well as track trophic changes across size ranges from paralarvae to adults. Additional research is needed to validate these trophic changes across size within individuals.  相似文献   

2.
A series of experiments investigated the potential role of microbial mats in nutrition of the early settlement stages of Penaeus semisulcatus. From 3 days post-metamorphosis, the microbial mat supported high growth and survival rates in postlarvae, equivalent to that supported by a control diet of Artemia nauplii and mussel. Examination of gut contents indicated that benthic postlarvae feed indiscriminately on the microbial mat. However, when postlarvae were fed separated size-fractions of the microbial mat, only the fraction containing a high concentration of infauna (mainly nematodes) was able to support the same growth as intact microbial mat. This appears to be due to the low nitrogen content (0.4–0.9 mmol g−1) of the various size-fractions, compared to that of infauna (4.0 mmol g−1). The stable isotope composition of the dietary size-fractions and postlarval shrimp tissue supports the hypothesis that the shrimp assimilated C and N primarily from the associated infauna. This may be due to selective feeding that is not apparent from stomach contents, due to rapid digestion of fauna soft tissues, or to differential assimilation of infaunal prey relative to other microbial mat components. The results demonstrate that microbial mats may support survival and growth in early-stage penaeid shrimp postlarvae on intertidal mud flats.  相似文献   

3.
The food web of two intertidal seagrass (Zostera marina and Zostera noltii) beds that may be influenced by the seasonal variation in food source abundance was studied in winter and in summer with δ13C and δ15N analysis. In spite of high relative variation of abundance of main primary producers at the two sites, the food web did not vary between winter and summer. The δ13C range of primary producers was wide. Zostera leaves, the most 13C-enriched source, were not consumed directly by grazers. Deposit and filter feeders have a similar δ13C and could use a mix of suspended and sedimented organic particulate matter, largely composed of detritus from macroalgae to seagrass. This trophic pathway allows the local incorporation of the high biomass produced by seagrasses. The wide δ15N range of predators was linked either to a large variety from omnivore to carnivore predators or to the also wide ranges of δ15N of primary consumers.  相似文献   

4.
Although mysids play important roles in marine food chains, studies on their production are scarce, especially for warm-water species. We investigated life history and production of Orientomysis robusta in a shallow warm-temperate habitat of the Sea of Japan. Its spawning and recruitment occurred throughout the year; 19 overlapping cohorts were recognizable over an annual cycle. The summer cohorts recruited in July–September exhibited rapid growth, early maturity, small brood size, and small body size. A converse set of life history traits characterized the autumn–winter cohorts recruited in October–March. The spring cohorts recruited in April–June had intermediate characteristics of both cohorts. Life spans were 19–33, 21–48, and 69–138 days for summer, spring, and autumn–winter cohorts, respectively, and mortality rates were high for spring and summer cohorts, especially during June–August but were low for autumn–winter cohorts. Production calculated from the summation of growth increments was 488.8 mg DW m−2 year−1 with an annual P/B ratio of 21.26. The short life span seems to be responsible for such an extremely high P/B ratio. A method not requiring recognition and tracking cohorts gave similar values (534.0 mg DW m−2 year−1 and 20.49). The close agreement in production values between the two methods indicates our estimates are valid.  相似文献   

5.
The shallow kelp forest at Santa Catalina Island, California (33.45 N, −118.49 W) is distinguished by several canopy guilds ranging from a floating canopy (Macrocystis pyrifera), to a stipitate, erect understory canopy (Eisenia arborea), to a short prostrate canopy just above the substratum (Dictyopteris, Gelidium, Laminaria, Plocamium spp.), followed by algal turfs and encrusting coralline algae. The prostrate macroalgae found beneath E. arborea canopies are primarily branching red algae, while those in open habitats are foliose brown algae. Densities of Corynactis californica, are significantly greater under E. arborea canopies than outside (approximately 1,200 versus 300 polyps m−2 respectively). Morphological differences in macroalgae between these habitats may affect the rate of C. californica particle capture and serve as a mechanism for determining polyp distribution and abundance. Laboratory experiments in a unidirectional flume under low (9.5 cm s−1) and high (21 cm s−1) flow speeds examined the effect of two morphologically distinct macroalgae on the capture rate of Artemia sp. cysts by C. californica polyps. These experiments (January–March 2006) tested the hypothesis that a foliose macroalga, D. undulata, would inhibit particle capture more than a branching alga, G. robustum. G. robustum, found predominantly under the E. arborea canopy did not affect particle capture. However, D. undulata, found predominantly outside of the canopy, inhibited particle capture rates by 40% by redirecting particles around C. californica polyps and causing contraction of the feeding tentacles. These results suggest that the morphology of flexible marine organisms may affect the distribution and abundance of adjacent passive suspension feeders.  相似文献   

6.
Oxygen consumption and tail beat frequency were measured on saithe (Pollachius virens) and whiting (Merlangius merlangus) during steady swimming. Oxygen consumption increased exponentially with swimming speed, and the relationship was described by a power function. The extrapolated standard metabolic rates (SMR) were similar for saithe and whiting, whereas the active metabolic rate (AMR) was twice as high for saithe. The higher AMR resulted in a higher scope for activity in accordance with the higher critical swimming speed (U crit) achieved by saithe. The optimum swimming speed (U opt) was 1.4 BL s−1 for saithe and 1.0 BL s−1 for whiting with a corresponding cost of transport (COT) of 0.14 and 0.15 J N−1 m−1. Tail beat frequency correlated strongly with swimming speed as well as with oxygen consumption. In contrast to swimming speed and oxygen consumption, measurement of tail beat frequency on individual free-ranging fish is relatively uncomplicated. Tail beat frequency may therefore serve as a predictor of swimming speed and oxygen consumption of saithe and whiting in the field.  相似文献   

7.
The photosynthetic adaptive features of non-dormant seeds in Posidonia oceanica were studied in order to evaluate the effects of light on germination success. Transmission electron micrographs showed the presence of chloroplasts in the epidermal cells, close to the nucleus at the periphery of the cytoplasm. The well-developed thylakoid membranes and the presence of starch granules indicated that the chloroplasts were photosynthetically active. The relationship between photosynthesis versus irradiance in P. oceanica seeds incubated at 15 and 21°C was analysed. The net photosynthesis in the non-dormant seed of P. oceanica was positive and compensated its respiration demand (90 μmol quanta m−2 s−1) at both temperatures. Net photosynthesis was negative at the other irradiance values. To test the effects of light on germination success, seeds were placed both in dark and light conditions. Germination success was significantly higher in light rather than in dark condition. The characteristics observed in the photosynthesis in P. oceanica seed could be a mechanism to guarantee seedling survival in temperate waters, demonstrating though the specialized nature of this species.  相似文献   

8.
The endangered seagrass Halophila johnsonii Eiseman, exhibits high-light adapted photophysiology consistent with its distribution in intertidal and shallow subtidal (0–3 m) coastal-lagoon habitats along 200 km of southeastern Florida. To examine the short-term responses of this seagrass to three controlled-irradiance treatments (PAR + UVA + UVB [full spectrum], PAR + UVA, and PAR only), greenhouse-acclimated plants were transferred to outdoor mesocosms during July–August 2002. Chlorophyll fluorescence, UV fluorescence, and samples for pigment extraction were collected in the greenhouse, prior to moving the plants outside and on days 1, 2, 3, 4, 6, 10, and 21 of the 24-day experiment. Typical of sun-adapted plants, effective quantum yields measured by pulse-amplitude modulated (PAM) fluorometry were relatively low in all treatments, ranging from 0.46 ± 0.09 (PAR only) to 0.58 ± 0.08 (PAR + UVA + UVB). In the PAR only treatments, there were strong effects on days 1 and 4, presumably because the irradiance in the greenhouse not only lacked all λ<400 nm, but also had low irradiance maxima (∼700 μmol photons m−2 s−1, compared with ∼1,500 μmol photons m−2 s−1 outside at midday). There were few treatment differences between PAR only and PAR + UVA treatments indicating little effect of UVA radiation on this species. Differences in effective quantum yields and relative electron transport rates between the PAR only and PAR + UVA + UVB treatments on day 4 indicated rapid acclimation to UVB radiation. Tissues of H. johnsonii contained compounds that absorbed strongly in the UV, with a λmax at ∼345 nm (depending on the extraction solvent). Absorption peak maxima and minima changed over the course of the experiment but there were no significant light-treatment differences in any pigment parameters. Percent UV shield values, measured using a newly developed UVA PAM fluorometer, were highest the day after plants were transferred from the greenhouse to the outdoor mesocosms and declined significantly to pretreatment levels in all treatments by day 21. Percent UV shield exhibited a significant positive relationship with UV-absorbing pigment (UVP) absorbance, however, the absence of treatment effects suggests that the wavelengths inducing pigment synthesis must lie between 400 and 700 nm (PAR). The results indicate that H. johnsonii rapidly acclimates to high UVB and PAR which may largely explain its distribution in intertidal and shallow subtidal areas.  相似文献   

9.
The scaling of metabolic rates with body mass is one of the best known and most studied characteristics of aquatic animals. Herein, we studied how size is related to oxygen consumption, ammonia excretion, and ingestion rates in tropical (Octopus maya) and cold-water (Enteroctopus megalocyathus) cephalopod species in an attempt to understand how size affects their metabolism. We also looked at how cephalopod metabolisms are modulated by temperature by constructing the relationship between metabolism and temperature for some benthic octopod species. Finally, we estimated the energy balance for O. maya and E. megalocyathus in order to validate the use of this information for aquaculture or fisheries management. In both species, oxygen consumption and ammonia excretion increased allometrically with increasing body weight (BW) expressed as Y = aBW b . For oxygen consumption, b was 0.71 and 0.69 for E. megalocyathus and O. maya, respectively, and for ammonia excretion it was 0.37 and 0.43. Both species had low O/N ratios, indicating an apparent dependence on protein energy. The mean ingestion rates for E. megalocyathus (3.1 ± 0.2% its BW day−1) and O. maya (2.9 ± 0.5% its BW day−1) indicate that voracity, which is characteristic of cephalopods, could be independent of species. The scope for growth (P = I − (H + U + R) estimated for E. megalocyathus was 28% higher than that observed in O. maya (320 vs. 249 kJ day−1 kg−1). Thus, cold-water cephalopod species could be more efficient than tropical species. The protein and respiratory metabolisms of O. maya, E. megalocyathus, and other octopod species are directly dependent on temperature. Our results offer complementary evidence that, as Clarke (2004) stated, the metabolic response (R and U) cannot be determined mechanistically by temperature, as previously proposed (Gillooly et al. 2002).  相似文献   

10.
Under laboratory conditions, the scallop Chlamys nobilis and the mussel Perna viridis were exposed to N-sulfocarbamoyl toxins (C2 toxin), a paralytic shellfish toxin (PST), by feeding a local toxic strain of the dinoflagellate Alexandrium tamarense (ATDP) that produced C2 toxin exclusively. The bivalves were subsequently depurated in the field, and their depuration kinetics, biotransformation and toxin distribution were quantified. Depuration was characterized by a rapid loss within the first day, followed by a secondary slower loss of toxins. In the fast depuration phase, scallops detoxified PSTs more quickly than the mussels (depuration rate constants for scallops and mussels were 1.16 day–1 and 0.87 day–1, respectively). In contrast, the mussels detoxified PSTs more quickly than the scallops in the slow depuration phase, and the calculated depuration rate constants (mean+SE) from day 2 to day 13 were 0.063+0.009 day–1 and 0.040+0.019 day–1 for mussels and scallops, respectively. The differences in the appearances of gonyautoxins, GTX2 and GTX3, and their decarbamoyl derivatives, dcGTX2, dcGTX3 and GTX5, which are all derivatives of C2 toxin, indicated active and species-specific biotransformation of the algal toxins in the two bivalves. In both species of bivalves, the non-viscera tissue contained fewer toxins and lower concentrations than the viscera-containing tissue compartment. In scallops, very little toxin was distributed in the adductor muscle. In mussels, most of the PSTs were found in the digestive gland with significant transport of toxins into the digestive gland from other tissues during the course of depuration. The toxin profiles of scallops and mussels differed from each other and from that of the toxic algae fed. A significant fraction of GTX5 was detected in the mussels but not in the scallops. Our study demonstrates a species specificity in the depuration kinetics, biotransformation and tissue distribution of PSTs among different bivalves.Communicated by T. Ikeda, Hakodate  相似文献   

11.
The feeding ecology of Sesarma plicata (Grapsidae: Sesarminae), the most abundant crab species in a mangrove forest dominated by Kandelia candel at Jiulongjiang Estuary, China, was investigated through field and laboratory experiments. Feeding preference and consumption rates were determined on mature, senescent and decomposed leaves of Kandelia candel, Bruguiera gymnorrhiza and Aegiceras corniculatum. In the laboratory, S. plicata preferred leaves of K. candel over those of B. gymnorrhiza and A. corniculatum, and consumed significantly more decomposed leaves than mature and senescent ones, irrespective of crab size. Field experiments with limited power failed to reveal detectable species preferences despite more consumption of K. candel, but decomposed leaves of each species were again preferred. Leaf characteristics associated with preference changed with plant species and leaf state. Low tannins and high water content characterized the preference for decomposed state of leaves. Species preference was significantly and negatively related to crude fibers and C:N ratios for mature leaves, and crude fiber for senescent leaves, but significantly and positively related to water content for decomposed leaves. Leaf consumption rates averaged for all leaf categories from laboratory no-choice feeding experiments were 0.101, 0.055 and 0.017 gDW ind−1 d−1 for large, medium and small crabs, respectively. In this forest, mean density of S. plicata was 20.5 ind m−2 as assessed by a manual catching method. Leaf litter removal rate during neap tides by sesarmid crabs was about 1.33 gDW m−2 d−1 in April 2006. The leaves removed by crabs were grazed on the sediment surface or taken into crab burrows, shredded and stored before being eaten.  相似文献   

12.
Changes in the protein, lipid, glycogen, cholesterol and energy contents, total amino acid and fatty acid profiles of Octopus vulgaris and O. defilippi tissues (gonad, digestive gland and muscle) during sexual maturation (spermatogenesis and oogenesis) were investigated. Both species showed an increase of amino acids and protein content in the gonad throughout sexual maturation (namely in oogenesis), but allocation of these nitrogen compounds from the digestive gland and muscle was not evident. The major essential amino acids in the three tissues were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and alanine. With respect to carbon compounds, a significant increasing trend (P<0.05) in the lipid and fatty acid contents in the three tissues was observed, and, consequently, there was also little evidence of accumulated lipid storage reserves being used for egg production. It seems that for egg production both Octopus species use energy directly from food, rather than from stored products. This direct acquisition model contrasts with the previous model for Octopus vulgaris proposed by ODor and Wells (1978: J Exp Biol 77:15–31). Most of saturated fatty acid content of the three tissues was presented as 16:0 and 18:0, monounsaturated fatty acid content as 18:1 and 20:1 and polyunsaturated fatty acid content as arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). Though cholesterol is an important precursor of steroid hormones, this sterol content exhibited variations that do not seem to be related with the maturation process. Moreover, significant differences (P<0.05) were obtained between genders, suggesting that perhaps there is a greater physiological demand for cholesterol during spermatogenesis than oogenesis. If the component sterols of octopus are of a dietary origin, considerable variation in the cholesterol content between species might be expected on the basis of the sterol composition of their prey. The glycogen reserves increased significantly in the gonad and decreased significantly (P<0.05) in the digestive gland and muscle of O. vulgaris (these trends were not evident in O. defilippi). Glycogen may play an important role in the maturation process and embryogenesis of these organisms, because carbohydrates are precursors of metabolic intermediates in the production of energy. It was evident that sexual maturation had a significant effect upon the gonad energy content, but the non-significant energy variation (P>0.05) in the digestive gland and muscle revealed no evidence that storage reserves are transferred from tissue to tissue. The biochemical composition of digestive gland and muscle may not be influenced by sexual maturation, but rather by other biotic factors, such as feeding activity, food availability, spawning and brooding.Communicated by S.A. Poulet, Roscoff  相似文献   

13.
The diatom Cylindrotheca closterium was exposed to transient light- and osmotic conditions as occur during its tidal emersion. The objective was to analyze how this simulated emersion contributes to the production of active oxygen species (AOS) and via this, to oxidative cell damage. Light- and salinity conditions were varied in factorial combination: low light (no UVB) or high light (unweighted UVB-dose rates of respectively 0.01; 0.07; 0.24; 1.03 W m−2) at normal (30 psu) or high salinity (60 psu). UVB (0.01–0.24 W m−2) and high salinity had a significant, negative effect on the photosynthetic efficiencies ΔF/F m’ (steady-state quantum yield) and F v/F m (maximum yield). UVB at 1.03 W m−2 (15 kJ m−2 d−1) almost arrested electron transport. At ecologically relevant UVB levels, i.e. below 0.24 W m−2 (≈3.4 kJ m−2 d−1) with UVB:PAR<0.4:100 (PAR photosynthetically active radiation) only dynamic photoinhibition was observed (protection via heat dissipation). Non-photochemical quenching was positively correlated with the de-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT). A decreasing ratio DT/(DD+DT) after 4 h of UVB at >0.07 W m−2 and at 60 psu indicated a reversal of the diatom xanthophyll cycle (diminished photoprotection) which may be caused by an enhanced AOS production. Oxidative stress and -damage to C. closterium cells were assessed applying fluorescent indicator dyes, via confocal microscopy and quantitative image analysis. AOS production rates (cellular DCF fluorescence) were stimulated by UV, and were ~50% higher at 60 psu. AOS production decreased with an increasing pre-exposure (0–4 h) to normal UVB (0.24 W m−2), which indicated a stimulation of the antioxidative defence. Non-protein thiols (indicator CMF) and glutathione pools (HPLC-analyzed) decreased with UVB-dose rates (0.01–0.24 W m−2), most likely due to AOS-mediated thiol oxidation. Hypersalinity (60 psu) and UVB (0.01–0.24 W m−2) caused membrane depolarization (dye DIBAC4(3)) and phospholipid hydrolysis (phospholipase A2 dye: bis-BODIPY FL-C11-PC). AOS production may have diminished the membrane polarity, and peroxidized the membrane lipids (HPLC-analyzed malondialdehyde) which enhanced PLA2 activity. The dyes indicated an increased oxidative (lipid) damage at a 15% inhibition of photosynthesis in this diatom, at UVB levels and salinities that can be expected in situ during its periodic tidal emersion.  相似文献   

14.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
The mantle of the pearl oyster Pinctada fucata was adopted for the proliferation profile study in our work and a proliferation hot spot was found in the outer epithelia of mantle central zone using the BrdU immunohistochemistry method. This result contradicts the previous research that the mantle has numerous growth centers all over the mantle epithelium, with the same proliferation activity throughout the whole mantle outer epithelial cells. This is the first report on the different proliferation features on the whole mantle where Alcian Blue/PAS staining analysis and ultrastructural observation with the aid of transmission electron microscope (TEM) demonstrated distinct features of the epithelium in four different regions of the mantle. Results from the present investigation displayed that in the outer epithelium of the marginal zone in mantle outer fold, organelles such as mitochondria and endoplasmic reticulum (ER) were well-developed and double membrane bounded vesicles were present; in the outer epithelia of mantle central zone, stem-like cells with a high ratio of nucleus to cytoplasm and comparatively undeveloped organelles were detected. Together with the observations of the cell proliferation profile of different regions of the mantle, a hypothetic model for the proliferation and differentiation of the pearl oyster’s mantle is proposed: there exists a proliferation “hot spot” in the outer epithelial cells of central zone and the proliferation ability decreases progressively from this “hot spot” towards the marginal zone; the whole mantle’s differentiation occurs continuously with its growth and the direction is from the proliferation ‘hot spot’ (central zone) towards the marginal zone. Furthermore, another interesting result was found when the proliferation rate was investigated together with the tidal rhythm: the proliferation activity was found to be closely correlated with the tidal rhythm, indicating that the mantle outer epithelia’s proliferation rhythm might be the impetus of the shell’s daily growth bands.  相似文献   

16.
The reconstruction of past climates is a major challenge. One approach is the use of paleoceanography, which looks for clues to the past activity of deep-sea currents by associating them with the melting of the poles. In different sampling zones, fossil biomarkers are used to reconstruct the oxygenation levels of the sea bottom. Among the ostracods (crustaceans), the family Cytherellidae is considered to be resistant to significant decreases in oxygen and their fossil valves are used as biomarkers for oxygenation levels in the past. We studied the basic principles behind Cytherella cf. abyssorum’s ability to adapt to variations in water oxygenation levels in an attempt to determine what could differentiate it from other ostracods. Cytherella cf. abyssorum Sars 1866 has an activity level and ventilatory frequency only half that of ostracods studied previously. When subjected to a decrease in oxygenation, it demonstrates the beginnings of ventilatory adaptation which is unknown in the other studied ostracods. Some morpho-functional aspects are also remarkable, such as the presence of thick valves, which can close hermetically by means of powerful adductor muscles. Compared with already studied ostracods, Cytherella cf. abyssorum has, therefore, characteristics which suggest an ability to present increased resistance in hypoxia. We discuss these results in the paleoceanographical context by describing a scenario suggesting why an increased proportion of the ostracod population could indicate the existence of ocean bottoms with low oxygenation.  相似文献   

17.
Life history and reproductive strategies influence population dynamics at the inter- and intra-specific level. Environmental conditions suitable for gonad development and spawning, the reproductive range, may be a smaller portion of the broader species distribution. The only known breeding population of veined rapa whelks (Rapana venosa) in North America is in Chesapeake Bay, USA. There is considerable interest in the potential reproductive range of this non-indigenous species given the rapa whelk’s negative impacts on commercial shellfish species in both its native and introduced ranges. Weight-specific reproductive output is described for wild caught Chesapeake Bay rapa whelks maintained in flow-through mesocosms for 2 years. Measured reproductive output within and between egg capsule deposition seasons (years) in relation to water temperature, salinity, daylength, and female size is used to describe the rapa whelk’s reproductive range. Egg capsule production is influenced by seasonal and absolute water temperatures as well as seasonal daylength cycles. Egg capsule deposition by Chesapeake Bay rapa whelks begins at water temperatures of approximately 18°C and continues for 11–15 weeks. Forty to 70% of female whelks deposited egg capsules in most weeks during this season, producing 150–200 egg capsules female−1 week−1. Water temperatures >28°C caused reduced egg capsule production relative to temperatures of 20–25°C. Egg capsule production was positively related to seasonal changes in daylength, and two peaks of egg capsule deposition were observed in the 2001 and 2002 deposition seasons. The combination of declining daylength and higher water temperatures in late summer was associated with the cessation of egg capsule deposition. A lower average weight specific reproductive output in 130–145 mm SL rapa whelks (average 12 ± 1%) than in 90–106 mm SL rapa whelks (average 22 ± 1% of body weight) may reflect a life history that balances the physiological costs of maintaining a large body mass with the production of many planktonic larvae from multiple clutches of egg capsules per breeding season over a 10–15-year lifespan. Estimates of the cumulative day-degree requirements corresponding to the annual initiation of egg capsule deposition were 238 and 236 for 2001 and 2002, respectively. Reproductive output and day-degree requirements for Chesapeake Bay rapa whelks were similar to values calculated from previous studies of native muricids (Eupleura caudata and Urosalpinx cinerea). A latitudinal range of 30–41° (N and S) is predicted as the realized reproductive range for rapa whelk populations on the basis of the day-degree requirements for native whelks and reproductively active invasive rapa whelk populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Concentrations of metals were determined in four species of anchovy (Coilia sp.) from the Yangtze River, Taihu Lake, and Hongze Lake in Jiangsu Province, China. Concentrations of Cr in anchovy fish muscle ranged from 2.6 × 10−2 to 5.0 mg/kg ww, and Coilia nasus taihuensis in Jiaoshan, Taihu Lake contained the highest concentrations of Cr, which was almost 111-fold higher than the mean value at other locations. Concentrations of Pb ranged from 1.5 × 10−2 to 1.3 × 10−1 mg/kg ww. Comparisons of concentrations of lead (Pb) among the four species indicated that anadromous species contained higher concentrations of Pb than did freshwater species. However, concentrations of Pb in C. nasus from the Nanjing and Haimen locations in the Yangtze River were not significant higher than those of two freshwater species: C. nasus taihuensis from Taihu Lake and C. brachygnathus from Hongze Lake (Duncan’s test, α = 0.05). While concentrations of Cd and Zn ranged from 7.0 × 10−4 to 3.6 × 10−3 mg/kg ww and 3.4 to 4.8 mg/kg ww, respectively, there were no significant differences in concentrations among the eight locations. The only concentration of the metals studied that exceeded the Chinese National Standard was Cr in Coilia from Jiaoshan, Taihu Lake, which was 2.5-fold higher than the standard. These results indicate that people who consume the genus Coilia are not at risk due to concentrations of metals, except Cr in C. nasus taihuensis from Jiaoshan in Taihu Lake. Concentrations of all of the metals studied except for Cr were similar to or less than those of metals in most other areas in the world.  相似文献   

19.
The surfgrass Phyllospadix japonicus is endemic to exposed shores of the northeastern Pacific Ocean. Unlike the majority of seagrasses, P. japonicus grows on rocky substrata. The specific physical features of the habitat are likely related to the peculiar ecological characteristics of P. japonicus. However, few studies have been conducted thus far on the growth dynamics of Phyllospadix spp., largely due to the turbulent water conditions in its habitat. P. japonicus is a dominant seagrass species, and it plays critical ecological roles on the eastern coast of Korea. Here, we examined its growth dynamics for the first time on the Korean coast. We measured shoot density, biomass, leaf production, phenology, morphology, tissue nutrient content, as well as environmental factors including underwater photon flux density (PFD), water temperature and water column nutrient concentrations from March 2003 to December 2005. Shoot density, biomass, leaf productivity and morphological characteristics exhibited significant seasonal variations; maximum values of these variables occurred in winter and early spring, and the minima were recorded in late summer and early fall. PFD and water temperature were, respectively, positively and negatively correlated with leaf production. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variation, nor was it correlated with leaf production. Leaf chlorophyll concentrations were correlated strongly with leaf production, whereas tissue nutrient contents were unrelated to leaf production. Maximum potential seed production ranged from 1,200 seeds m−2 in 2004 to 3,445 seeds m−2 in 2003; however, seedlings were rarely detected through the observation period. Thus, P. japonicus meadows at the study site appeared to persist through vegetative propagation. Leaf C content varied bimodally, with peaks in spring and fall. Leaf N content was minimal during months in which leaf productivity was lowest. These patterns in tissue nutrient content are clearly different from those of the majority of soft-substratum seagrasses and appear to relate to the reduced physiological tolerance of high temperature in P. japonicus compared to other temperate seagrasses.  相似文献   

20.
Stable 13C and 15N isotope analyses of scale, bone, and muscle tissues were used to investigate diet and trophic position of North Atlantic bluefin tuna (Thunnus thynnus Linnaeus) during residency in the northwest Atlantic Ocean off the northeast coast of the United States. Adult bluefin tuna scales collected from fish between June and October 2001 were significantly enriched in 13C compared to both muscle and bone across all months, while muscle was significantly enriched in 15N compared to either bone or scale throughout the same period. In muscle tissue, there was evidence of a shift over the summer from prey with 13C values (–17 to –18) that were characteristic of silver hake (Merluccius bilinearis) to species with 13C values of –20 to –21 that were similar to Atlantic herring (Clupea harengus) and sandlance (Ammodytes americanus). Depletion of 15N values in adult scales and bone compared to muscle tissue may be explained by bone and scale samples representing juvenile or life-long feeding habits, isotopic routing, or isotopic differences in amino acid composition of the three tissue types. Adult bluefin tuna were estimated to be feeding at a trophic position similar to pelagic sharks in the northwest Atlantic Ocean, while the trophic positions of yellowfin tuna (Thunnus albacares), albacore tuna (Thunnus alalunga), and juvenile bluefin tuna were indicative of a diet of up to a full trophic position below adult bluefin tuna. The close relationship between the juvenile bluefin 15N values and those of suspension feeders suggests that nektonic crustaceans or zooplankton may contribute significantly to the diet of bluefin tuna, a food source previously overlooked for this species in the northwest Atlantic Ocean.Communicated by J.P. Grassle, New Brunswick  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号