首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radionuclides 210Po and 210Pb widely present in the terrestrial environment are the final long-lived radionuclides in the decay of 238U in the earth’s crust. Their presence in the atmosphere is due to the decay of 222Rn diffusing from the ground. The range of activity concentrations in ground level air for 210Po is 0.03-0.3 Bq m−3 and for 210Pb 0.2-1.5 Bq m−3.In drinking water from private wells the activity concentration of 210Po is in the order of 7-48 mBq l−1 and for 210Pb around 11-40 mBq l−1. From water works, however, the activity concentration for both 210Po and 210Pb is only in the order of 3 mBq l−1.Mosses, lichens and peat have a high efficiency in capturing 210Po and 210Pb from atmospheric fallout and exhibit an inventory of both 210Po and 210Pb in the order of 0.5-5 kBq m−2 in mosses and in lichens around 0.6 kBq m−2. The activity concentrations in lichens lies around 250 Bq kg−1, dry mass.Reindeer and caribou graze lichen which results in an activity concentration of 210Po and 210Pb of about 1-15 Bq kg−1 in meat from these animals. The food chain lichen-reindeer or caribou, and Man constitutes a unique model for studying the uptake and retention of 210Po and 210Pb in humans. The effective annual dose due to 210Po and 210Pb in people with high consumption of reindeer/caribou meat is estimated to be around 260 and 132 μSv a−1 respectively.In soils, 210Po is adsorbed to clay and organic colloids and the activity concentration varies with soil type and also correlates with the amount of atmospheric precipitation. The average activity concentration levels of 210Po in various soils are in the range of 20-240 Bq kg−1.Plants become contaminated with radioactive nuclides both by absorption from the soil (supported Po) and by deposition of radioactive fallout on the plants directly (unsupported Po). In fresh leafy plants the level of 210Po is particularly high as the result of the direct deposition of 222Rn daughters from atmospheric deposition. Tobacco is a terrestrial product with high activity concentrations of 210Po and 210Pb. The overall average activity concentration of 210Po is 13 ± 2 Bq kg−1. It is rather constant over time and by geographical origin.The average median daily dietary intakes of 210Po and 210Pb for the adult world population was estimated to 160 mBq day−1 and 110 mBq day−1, corresponding to annual effective doses of 70 μSv a−1 and 28 μSv a−1, respectively. The dietary intakes of 210Po and 210Pb from vegetarian food was estimated to only 70 mBq day−1 and 40 mBq day−1 corresponding to annual effective doses of 30.6 μSv a−1 and 10 μSv a−1, respectively. Since the activity concentration of 210Po and 210Pb in seafood is significantly higher than in vegetarian food the effective dose to populations consuming a lot of seafood might be 5-15 fold higher.  相似文献   

2.
Recent developments regarding environmental impact assessment methodologies for radioactivity have precipitated the need for information on levels of naturally occurring radionuclides within and transfer to wild flora and fauna. The objectives of this study were therefore to determine activity concentrations of the main dose forming radionuclides 210Po and 210Pb in biota from terrestrial ecosystems thus providing insight into the behaviour of these radioisotopes. Samples of soil, plants and animals were collected at Dovrefjell, Central Norway and Olkiluoto, Finland. Soil profiles from Dovrefjell exhibited an approximately exponential fall in 210Pb activity concentrations from elevated levels in humus/surface soils to “supported” levels at depth. Activity concentrations of 210Po in fauna (invertebrates, mammals, birds) ranged between 2 and 123 Bq kg−1 d.w. and in plants and lichens between 20 and 138 Bq kg−1 d.w. The results showed that soil humus is an important reservoir for 210Po and 210Pb and that fauna in close contact with this media may also exhibit elevated levels of 210Po. Concentration ratios appear to have limited applicability with regards to prediction of activity concentrations of 210Po in invertebrates and vertebrates. Biokinetic models may provide a tool to explore in a more mechanistic way the behaviour of 210Po in this system.  相似文献   

3.
Radionuclide analyses were performed in tissue samples including muscle, gonad, liver, mammary gland, and bone of marine mammals stranded on the Portuguese west coast during January-July 2006. Tissues were collected from seven dolphins (Delphinus delphis and Stenella coeruleoalba) and one pilot whale (Globicephala sp.). Samples were analyzed for 210Po and 210Pb by alpha spectrometry and for 137Cs and 40K by gamma spectrometry. Po-210 concentrations in common dolphin’s muscle (D. delphis) averaged 56 ± 32 Bq kg−1 wet weight (w.w.), while 210Pb averaged 0.17 ± 0.07 Bq kg−1 w.w., 137Cs averaged 0.29 ± 0.28 Bq kg−1 w.w., and 40K 129 ± 48 Bq kg−1 w.w. Absorbed radiation doses due to these radionuclides for the internal organs of common dolphins were computed and attained a 1.50 μGy h−1 on a whole body basis. 210Po was the main contributor to the weighted absorbed dose, accounting for 97% of the dose from internally accumulated radionuclides. These computed radiation doses in dolphins are compared to radiation doses from 210Po and other radionuclides reported for human tissues. Due to the high 210Po activity concentration in dolphins, the internal radiation dose in these marine mammals is about three orders of magnitude higher than in man.  相似文献   

4.
Several medicinal plants used in Italy were analysed to determine natural and artificial radioactivity in those parts (leaves, fruits, seeds, roots, peduncles, flowers, barks, berries, thallus) used generally as remedies. The radionuclides were determined by alpha (238U, 210Po) and gamma (214Pb-Bi, 210Pb, 40K and 137Cs) spectrometry. 238U ranged between <0.1 and 7.32 Bq kgdry−1; 210Po between <0.1 and 30.3 Bq kgdry−1; 214Pb-214Bi between <0.3 and 16.6 Bq kgdry−1; 210Pb between <3 and 58.3 Bq kgdry−1; 40K between 66.2 and 3582.0 Bq kgdry−1; 137Cs between <0.3 and 10.7 Bq kgdry−1. The percentage of 210Po extraction in infusion and decoction was also determined; the arithmetical mean value of percentage of 210Po extraction resulted 20.7 ± 7.5.  相似文献   

5.
Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of 40K and of 238U, 232Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y−1), the major part of which (99 %) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg−1 for 238U, from 44 to 255 Bq kg−1 for 226Ra, from 59 to 205 Bq kg−1 for 210Pb, from 9 to 41 Bq kg−1 for 228Ra (232Th) and from 59 to 227 Bq kg−1 for 40K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg−1 for 238U, from 142 to 605 Bq kg−1 for 226Ra, from 133 to 428 Bq kg−1 for 210Pb, from 27 to 68 Bq kg−1 for 228Ra (232Th) and from 204 to 382 Bq kg−1 for 40K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5 man-Sv (GW a)−1 for typical old and modern coal-fired power plants, respectively.  相似文献   

6.
A survey was carried out on the activity concentrations of 210Pb and 210Po in cereal grains produced in Finland. The cereal species were wheat (Triticum aestivum), rye (Secale cereale), oats (Avena sativa) and barley (Hordeum vulgare), which account for 90% of the Finnish consumption of cereal products. The survey consisted of 18 flour and 13 unprocessed cereal samples and one hulled grain sample from 22 flour mills. According to the results, the mean 210Pb/210Po concentrations in wheat grains, wheat flour, rye flour, oat grains and barley grains were 0.29, 0.12, 0.29, 0.36 and 0.36 Bq kg−1, respectively. Combined with the consumption rates of the products, we assess that the mean effective doses from 210Pb and 210Po in cereal products for the adult male and female population are 22 and 17 μSv per year, respectively.  相似文献   

7.
The determination of 210Po and 210Pb was performed in marine organisms from the seashore to abyssal depths, encompassing a plethora of species from the microscopic plankton to the sperm whale. Concentrations of those radionuclides ranged from low values of about 5 × 10−1 Bq kg−1 (wet wt.) in jellyfish, to very high values of about of 3 × 104 Bq kg−1 (wet wt.) in the gut walls of sardines, with a common pattern of 210Po > 210Pb.These radionuclides are primarily absorbed from water and concentrated by phyto- and microzooplankton, and then are transferred to the next trophic level along marine food chains. Investigation in epipelagic, mesopelagic, bathypelagic and abyssobenthic organisms revealed that 210Po is transferred in the marine food webs with transfer factors ranging from 0.1 to 0.7, and numerically similar to those of the energy transfer in the marine food chains. As 210Po preferentially binds to amino acids and proteins, its transfer in food chains likely traces protein transfer and, thus, 210Po transfer factors are similar to ecotrophic coefficients. 210Pb is transferred less efficiently in marine food chains and this contributes to increased 210Po:210Pb activity ratios in some trophic levels.  相似文献   

8.
Polonium-210 (210Po) radioactive concentrations were determined in human semen fluid of vasectomized non-smoker volunteers. The 210Po levels ranged from 0.10 to 0.39 mBq g−1 (mean: 0.23 ± 0.08 mBq g−1). This value decreased to 0.10 ± 0.02 mBq g−1 (range from 0.07 to 0.13 mBq g−1) after two weeks of a controlled diet, excluding fish and seafood. Then, volunteers ate during a single meal 200 g of the cooked mussel Perna perna L., and 210Po levels were determined again, during ten days, in semen fluid samples collected every morning. Volunteers continued with the controlled diet and maintained sexual abstinence through the period of the experiment. A 300% increase of 210Po level was observed the day following mussel consumption, with a later reduction, such that the level returned to near baseline by day 4.  相似文献   

9.
To provide baseline data on background radiation levels for the future assessment of the impact of nuclear and thermal power stations, a systematic study was carried out in the Mallipattinam ecosystem of Tamil Nadu, India. Mallipattinam is located between the Kudankulam and Kalpakkam nuclear power plants and near to Tuticorin thermal power plant. Water, sediments, seaweeds, crustaceans, molluscs, and fish were collected to measure the concentrations of 210Po and 210Pb. The concentrations of 210Po and 210Pb in most samples are comparable to values reported worldwide. In fish, the concentrations of 210Po and 210Pb are in the range 16-190 Bq kg−1 and 8-153 Bq kg−1, respectively. The concentration factors of 210Po and 210Pb for the biotic components ranges from 103 to 106.  相似文献   

10.
Mosses and lichens are useful biological indicators of environmental contamination for a variety of metals and radionuclides of both natural and artificial origin. These plants lack a well-developed root system and rely largely on atmospheric deposition for nourishment. Therefore in the study, different lichens (Cladonia convoluta, Cladonia foliacea) and mosses (Homalothecium sericeum, Hypnum lacunosum, Hypnum cupressiforme, Tortella tortuosa, Didymodon acutus, Syntrichia ruralis, Syntrichia intermedia, Pterogonium graciale, Isothecium alopecuroides, Pleurochatae squarrosa) were collected around the Yata?an (Mu?la), Soma (Manisa), Seyitömer - Tunçbilek (Kütahya) coal-fired power plants and investigated for potential use as biomonitors for 210Po and 210Pb deposition. While the activity concentrations of 210Po and 210Pb in lichens are in the ranges of 151 ± 7-593 ± 21 and 97 ± 5-364 ± 13 Bq kg−1, for mosses the ranges for 210Po and 210Pb are 124 ± 5-1125 ± 38 and 113 ± 4-490 ± 17 Bq kg−1, respectively. In the study, the moss samples were observed to accumulate more 210Po and 210Pb compared to lichens. While the most suitable biomonitor was a moss species (H. lacunosum) for Yata?an (Mu?la), it was another moss species (S. intermedia) for Soma (Manisa) and Seyitömer - Tunçbilek (Kütahya) sites. 210Po concentrations were found higher than 210Pb concentrations at the all sampling stations.  相似文献   

11.
Over the past ∼5 decades, the distribution of 222Rn and its progenies (mainly 210Pb, 210Bi and 210Po) have provided a wealth of information as tracers to quantify several atmospheric processes that include: i) source tracking and transport time scales of air masses; ii) the stability and vertical movement of air masses iii) removal rate constants and residence times of aerosols; iv) chemical behavior of analog species; and v) washout ratios and deposition velocities of aerosols. Most of these applications require that the sources and sink terms of these nuclides are well characterized.Utility of 210Pb, 210Bi and 210Po as atmospheric tracers requires that data on the 222Rn emanation rates is well documented. Due to low concentrations of 226Ra in surface waters, the 222Rn emanation rates from the continent is about two orders of magnitude higher than that of the ocean. This has led to distinctly higher 210Pb concentrations in continental air masses compared to oceanic air masses. The highly varying concentrations of 210Pb in air as well the depositional fluxes have yielded insight on the sources and transit times of aerosols. In an ideal enclosed air mass (closed system with respect to these nuclides), the residence times of aerosols obtained from the activity ratios of 210Pb/222Rn, 210Bi/210Pb, and 210Po/210Pb are expected to agree with each other, but a large number of studies have indicated discordance between the residence times obtained from these three pairs. Recent results from the distribution of these nuclides in size-fractionated aerosols appear to yield consistent residence time in smaller-size aerosols, possibly suggesting that larger size aerosols are derived from resuspended dust. The residence times calculated from the 210Pb/222Rn, 210Bi/210Pb, and 210Po/210Pb activity ratios published from 1970’s are compared to those data obtained in size-fractionated aerosols in this decade and possible reasons for the discordance is discussed with some key recommendations for future studies.The existing global atmospheric inventory data of 210Pb is re-evaluated and a ‘global curve’ for the depositional fluxes of 210Pb is established. A current global budget for atmospheric 210Po and 210Pb is also established. The relative importance of dry fallout of 210Po and 210Pb at different latitudes is evaluated. The global values for the deposition velocities of aerosols using 210Po and 210Pb are synthesized.  相似文献   

12.
Concentrations of the natural radionuclides 238U, 226Ra, 232Th and 40K have been measured by γ-ray spectrometry in 796 topsoil samples from the Pearl River Delta Zone (PRDZ) of Guangdong, China. The mean concentrations for 238U, 226Ra, 232Th and 40K were found to be 140 ± 37 Bq kg−1, 134 ± 41 Bq kg−1, 187 ± 80 Bq kg−1 and 680 ± 203 Bq kg−1 dry mass, respectively. These values were all higher than the mean values in soil for China and the world. Outdoor air-absorbed dose rates, calculated from activity concentrations of 226Ra, 232Th and 40K, ranged from 86 to 237 nGy h−1, with a mean value of 165 ± 46 nGy h−1. The corresponding annual outdoor effective dose rate per person was estimated to be between 0.11 and 0.29 mSv y−1, with a mean value of 0.20 ± 0.06 mSv y−1, which was also higher than the world mean value of 0.07 mSv y−1. The radium equivalent activity (Raeq) and the external hazard index (Ir) resulted from the natural radionuclides in soil, were also calculated and found to vary from 230 to 676 Bq kg−1 and from 0.6 to 1.8, respectively. The Raeq and the Ir in all the investigated regions were up to 75% higher than the set limits of 370 Bq kg−1 and 1.0, respectively.  相似文献   

13.
Natural radioactive materials under certain conditions can reach hazardous radiological levels. So, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks and to have a baseline for future changes in the environmental radioactivity due to human activities. The natural radionuclide (226Ra, 232Th, and 40K) contents in soil were determined for 26 locations around the Upper Siwaliks of Kala Amb, Nahan and Morni Hills, Northern India, using high-resolution gamma-ray spectrometric analysis. It was observed that the concentration of natural radionuclides viz., 226Ra, 232Th and 40K, in the soil varies from 28.3 ± 0.5 to 81.0 ± 1.7 Bq kg−1, 61.2 ± 1.3 to 140.3 ± 2.6 Bq kg−1 and 363.4 ± 4.9 to 1002.2 ± 11.2 Bq kg−1 respectively. The total absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranged from 71.1 to 162.0 nGy h−1. The radium equivalent (Req) and the external hazard index (Hex), which resulted from the natural radionuclides in soil, were also calculated and found to vary from 149.4 to 351.8 Bq kg−1and from 0.40 to 0.95 respectively. These values in Upper Siwaliks area were compared with that from the adjoining areas of Punjab. The radium equivalent activities in all the soil samples were lower than the limit (370 Bq kg−1) set in the Organization for Economic Cooperation and Development (OECD) report and the dose equivalent was within the safe limit of 1 mSv y−1.  相似文献   

14.
The Sambhar Salt Lake hydrological system, including river waters, groundwaters, evaporating pans and sub-surface brines, has been analyzed for the salt content (TDS) and naturally occurring radionuclides (210Po, 210Pb and 226,228Ra). The abundance of these radionuclides and their activity ratios show a wide variation in different hydrological regimes, which helps to geochemically characterize the lake system. A significantly lower Ra to total dissolved solids (TDS) ratio in the brines (by two to three orders of magnitude), when compared to the groundwaters and river waters, suggests removal of dissolved Ra by co-precipitation with Ca–Mg minerals at an early stage of the brine evolution. The concentration of Ra in evaporating lake/pan waters saturates at a value of about 35 Bq L−1 over the salinity range of 100–370 g L−1; attributable to its equilibration with the clay minerals. The two distinct regimes, saline lake system (lake water, evaporating pans and sub-surface brines) and groundwaters have been identified based on their differences in the distribution of 226,228Ra isotopes. This observation points to the conclusion that the groundwaters and the lake brines are not intimately coupled in terms of their origin and evolution. The abundances of 210Po and 210Pb along with their activity ratios (210Po/210Pb) are markedly different among the surface lake waters/evaporating pans, sub-surface lake brines and groundwaters. These differences are explained in terms of different geochemical behaviour of these nuclides in presence of algae and organic matter present in these water regimes.  相似文献   

15.
Some important naturally occurring α- and β-radionuclides in drinking water samples collected in Italy were determined and the radiological quality evaluated. The mean activity concentrations (mBq L−1) of the radionuclides in the water samples were almost in the order: 26 ± 36 (234U) > 21 ± 30 (238U) > 8.9 ± 15 (226Ra) > 4.8 ± 6.3 (228Ra) > 4.0 ± 4.1 (210Pb) > 3.2 ± 3.7 (210Po) > 2.7 ± 1.2 (212Pb) > 1.4 ± 1.8 (224Ra) > 1.1 ± 1.3 (235U) > 0.26 ± 0.39 (228Th) > 0.0023 ± 0.0009 (230Th) > 0.0013 ± 0.0006 (232Th). The mean estimated dose (μSv yr−1) to an adult from the water intake was in this order: 2.8 ± 3.3 (210Po) > 2.4 ± 3.2 (228Ra) > 2.1 ± 2.1 (210Pb) > 1.8 ± 3.1 (226Ra) > 0.94 ± 1.30 (234U) > 0.70 ± 0.98 (238U) > 0.069 ± 0.087 (224Ra) > 0.036 ± 0.044 (235U) > 0.014 ± 0.021 (228Th) > 0.012 ± 0.005 (212Pb) > 0.00035 ± 0.00029 (230Th) > 0.00022 ± 0.00009 (232Th). It is obvious that 210Po, 228Ra, 210Pb and 226Ra are the most important dose contributors in the drinking water intake. As far as the seventeen brands of analysed drinking water were concerned, the committed effective doses were in the range of 2.81–38.5 μSv yr−1, all well below the reference level of the committed effective dose (100 μSv yr−1) recommended by the WHO. These data throw some light on the scale of the radiological impact on the public from some naturally occurring radionuclides in drinking water, and can also serve as a comparison for the dose contribution from artificial radionuclides released to the environment as a result of human practices. Based on the radionuclide composition in the analysed waters, comment was made on the new screening level for gross α activity in guidelines for drinking-water quality recommended by the WHO, 2004.  相似文献   

16.
The distribution and behaviour of the natural-series alpha-emitter polonium-210 in the marine environment has been under study for many years primarily due to its enhanced bioaccumulation, its strong affinity for binding with certain internal tissues, and its importance as a contributor to the natural radiation dose received by marine biota as well as humans consuming seafoods. Results from studies spanning nearly 5 decades show that 210Po concentrations in organisms vary widely among the different phylogenic groups as well as between the different tissues of a given species. Such variation results in 210Po concentration factors ranging from approximately 103 to over 106 depending upon the organism or tissue considered. 210Po/210Pb ratios in marine species are generally greater than unity and tend to increase up the food chain indicating that 210Po is preferentially taken up by organisms compared to its progenitor 210Pb. The effective transfer of 210Po up the food chain is primarily due to the high degree of assimilation of the radionuclide from ingested food and its subsequent strong retention in the organisms. In some cases this mechanism may lead to an apparent biomagnification of 210Po at the higher trophic level. Various pelagic species release 210Po and 210Pb packaged in organic biodetrital particles that sink and remove these radionuclides from the upper water column, a biogeochemical process which, coupled with scavenging rates of this radionuclide pair, is being examined as a possible proxy for estimating downward organic carbon fluxes in the sea. Data related to preferential bioaccumulation in various organisms, their tissues, resultant radiation doses to these species, and the processes by which 210Po is transferred and recycled through the food web are discussed. In addition, the main gaps in our present knowledge and proposed areas for future studies on the biogeochemical behaviour of 210Po and its use as a tracer of oceanographic processes are highlighted in this review.  相似文献   

17.
Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using 210Pb and 137Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported 210Pb and 137Cs decreased with the depth in both of the two sample cores. The 210Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the 137Cs time marker. Recent atmospheric 210Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m−2 y−1, which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m−2 y−1 with a range of Pb concentration of 14-262 μg g−1. The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection.  相似文献   

18.
Concentration of radionuclides 210Pb and 7Be, having half lives of 22.3 years and 53.29 days, respectively, in the surface air samples of Islamabad (33.38° N, 73.10° E and Altitude ∼536 m asl.) are measured. The non-destructive technique of gamma-spectrometry, with a high purity germanium HPGe detector, was employed for the analysis of all samples. The annual average concentrations of 210Pb and 7Be in the surface air samples were determined as 0.284 ± 0.15 and 3.171 ± 1.14 mBq m−3, respectively. Our results have shown a seasonal variation of the concentration of 7Be in air samples with high values for the spring season. High concentrations for 210Pb are obtained when air masses originate from plain areas of Pothohar region, located in the South-West, West and North West of Islamabad. Our values of concentrations show a nice agreement with the relevant reported results.  相似文献   

19.
Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any ‘amang’ processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h−1. The mean external gamma dose rate was 222 ± 191 nGy h−1. Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039 ± 104 nGy h−1. The activity concentrations of 238U, 232Th and 40K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12–426 Bq kg−1 for 238U, 19–1377 Bq kg−1 for 232Th and <19–2204 Bq kg−1 for 40 K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1 m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.  相似文献   

20.
Activity of 210Po and 210Pb were measured in soil and sediment samples collected from the major rivers Kali, Sharavathi and Netravathi of Coastal Karnataka. The activity of these two radionuclides were determined by radiochemical separation of 210Po and counting the activity using a ZnS(Ag) Alpha counter. The activity of 210Pb was higher than that of 210Po in the riverine environs. The 210Po and 210Pb content in sediment was found to increase with silt/clay and organic matter contents. However no significant correlation was found between the activity 210Po and 210Pb with pH in sediments. The activity of 210Po and 210Pb and influence of physico-chemical parameters on these radionuclides were studied and discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号