首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A sediment core collected from the sub-aqueous delta of the Yangtze River estuary was subjected to analyses of 137Cs and plutonium (Pu) isotopes. The 137Cs was measured using γ-spectrometry at the laboratories at the Nanjing University and Pu isotopes were determined with Accelerator Mass Spectrometry (AMS), measurements made at the Australian National University. The results show considerable structure in the depth concentration profiles of the 137Cs and 239+240Pu. The shape of the vertical 137Cs distribution in the sediment core was similar to that of the Pu. The maximum 137Cs and 239+240Pu concentrations were 16.21 ± 0.95 mBq/g and 0.716 ± 0.030 mBq/g, respectively, and appear at same depth. The average 240Pu/239Pu atom ratio was 0.238 ± 0.007 in the sediment core, slightly higher than the average global fallout value. The changes in the 240Pu/239Pu atom ratios in the sediment core indicate the presence of at least two different Pu sources, i.e., global fallout and another source, most likely close-in fallout from the Pacific Proving Grounds (PPG) in the Marshall Islands, and suggest the possibility that Pu isotopes are useful as a geochronological tool for coastal sediment studies. The 137Cs and 239+240Pu inventories were estimated to be 7100 ± 1200 Bq/m2 and 407 ± 27 Bq/m2, respectively. Approximately 40% of the 239+240Pu inventory originated from the PPG close-in fallout and about 50% has derived from land-origin global fallout transported to the estuary by the river. This study confirms that AMS is a useful tool to measure 240Pu/239Pu atom ratio and can provide valuable information on sedimentary processes in the coastal environment.  相似文献   

2.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   

3.
Anthropogenic Pu isotopes are important geochemical tracers for sediment studies. Their distributions and sources in the water columns as well as the sediments of the North Pacific have been intensively studied; however, information about Pu in the Southeast Asian seas is limited. To study the isotopic composition of Pu, and thus to identify its sources, we collected sediment core samples in the South China Sea and the Sulu Sea during the KH-96-5 Cruise of the R/V Hakuho Maru. We analysed the activities of 239+240Pu and the atom ratios of 240Pu/239Pu using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The 240Pu/239Pu atom ratios in the sediments of both areas (inventory weighted mean: 0.251 for the South China Sea and 0.280 for the Sulu Sea) were higher than the global fallout value (0.178 ± 0.019), suggesting the existence of Pu from the Pacific Proving Grounds in the North Pacific. Low inventories of 239+240Pu in sediments were observed in the South China Sea (3.75 Bq/m2) and the Sulu Sea (1.38 Bq/m2). Most of the Pu input is still present in the water column. Scavenging and benthic mixing processes were considered to be the main processes controlling the distribution of Pu in the deep-sea sediments of both study areas.  相似文献   

4.
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source.  相似文献   

5.
The aim of the paper was plutonium (238Pu and 239+240Pu) determination in seabirds, permanently or temporarily living in northern Poland at the Baltic Sea coast. Together 11 marine birds species were examined: 3 species permanently residing in the southern Baltic, 4 species of wintering birds and 3 species of migrating birds. The obtained results indicated plutonium is non-uniformly distributed in organs and tissues of analyzed seabirds. The highest plutonium content was found in the digestion organs and feathers, the smallest in skin and muscles. The plutonium concentration was lower in analyzed species which feed on fish and much higher in herbivorous species. The main source of plutonium in analyzed marine birds was global atmospheric fallout.  相似文献   

6.
We investigated the vertical profiles of 239+240Pu, 137Cs, and excess 210Pb (210Pbex) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of 239+240Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of 239+240Pu from the catchment area in addition to direct deposition on the lake surfaces. The 137Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the 137Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The 137Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The 239+240Pu/137Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the 137Cs was lost from the sediments. The low inventory of 137Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.  相似文献   

7.
Measurements of airborne radioactive aerosol concentration were carried out on the basis of 1-3 days samples after the Chernobyl disaster and during the period of 1992-2003. Transport of "hot" particles of different composition resulted in the high activity concentrations of (137)Cs, (238)Pu, (239,240)Pu and (241)Am in the atmosphere in Vilnius at the end of April 1986. The (240)Pu/(239)Pu atom ratio showed clear evidence of non-global plutonium originating from the Chernobyl accident in the atmosphere over Lithuania. The (240)Pu/(239)Pu atom ratio ranged from 0.14 to 0.40 in monthly samples in Vilnius in 1995-2003. An increase in activity concentration of (137)Cs by a factor of 100 (up to 300 microBq/m(3)) was found following forest fires in the Ukraine and Belarus. However, no transport of the Chernobyl plutonium was observed and the (240)Pu/(239)Pu atom ratio in samples collected during the forest fires was found to be 0.229 and 0.185, respectively. The exponential decrease in the (240)Pu/(239)Pu atom ratio from 0.30 to 0.19 (mean values) was observed in 1995-2003.  相似文献   

8.
The construction of high resolution chronologies of sediment profiles corresponding to the last 50-100 years usually entails the measurement of fallout radionuclides 210Pb and 137Cs. The anthropogenic radionuclide, 137Cs, originating from atmospheric nuclear weapons testing can provide an important “first appearance” horizon of known age (1954-1955), providing much-needed validation for the sometimes uncertain interpretations associated with 210Pb geochronology. However, while 137Cs usually provides a strong signal in sediment in the northern hemisphere, total fallout of 137Cs in the southern hemisphere was only 25% that of the north and the low activities of 137Cs seen in Australian and New Zealand sediments can make its horizon of first appearance somewhat arguable. Low 137Cs fallout also limited the size of the 1963-1964 fallout peak, a peak that is usually seen in northern hemisphere sediment profiles but is often difficult to discern south of the equator.This paper shows examples of the use of nuclear weapons fallout Pu as a chronomarker in sediment cores from Australia (3 sites) and New Zealand (1 site). The Pu profiles of five cores are examined and compared with the corresponding 137Cs profiles and 210Pb geochronologies. We find that Pu has significant advantages over 137Cs, including greater measurement sensitivity using alpha spectrometry and mass spectrometric techniques compared to 137Cs measurements by gamma spectrometry. Moreover, Pu provides additional chronomarkers associated with changes in the Pu isotopic composition of fallout during the 1950s and 1960s. In particular, the 238Pu/239+240Pu activity ratio shows distinct shifts in the early 1950s and the mid to late 1960s, providing important known-age horizons in southern hemisphere sediments. For estuarine and near-shore sediments Pu sometimes has another significant advantage over 137Cs due to its enrichment in bottom sediment relative to 137Cs resulting from the more efficient scavenging of dissolved Pu in seawater by sediment particles.  相似文献   

9.
The aim of the work was to estimate plutonium inflow from the Vistula River’s catchments area to the Baltic Sea. There were differences in plutonium activities depending on season and sampling site. The highest activities of 238Pu and 239+240Pu were transported from the Vistula River watershed to the Baltic Sea in spring and the lowest in summer. Annually, the southern Baltic Sea is enriched via the Vistula River with 10.3 MBq of 238Pu and 89.0 MBq of 239+240Pu. The enhanced concentration of plutonium in water from the Vistula River is the result of its runoff from the Vistula drainage area, mostly from snowmelt, enhanced rainfalls and leached materials from river bed.  相似文献   

10.
This paper presents and discusses the results of (239+240)Pu determinations in different components of Gdańsk bay and Gdańsk basin ecosystem, as well as estimated sources and inventories of plutonium in these basins. The total plutonium (239+240)Pu activities deposited in Gdańsk bay and Gdańsk basin sediments are 1.18 TBq and 3.77 TBq, respectively. Two rivers, the Vistula and Neman rivers, and atmospheric fallout were distinguished as the main sources of plutonium in these basins. In seawater (with suspended matter included) there is about 2.33 GBq (239+240)Pu (0.2% of total activity) in Gdańsk bay and 9.92 GBq (239+240)Pu (0.3% of total activity) in Gdańsk basin. In both cases, 56% of (239+240)Pu is associated with suspended matter. Organisms contain 3.81 MBq in Gdańsk bay and 7.45 MBq (239+240)Pu in Gdańsk basin. From this value in Gdańsk bay 82.1% of plutonium is associated with zoobenthos, 13.6% with phytobenthos, 1.6% with phytoplankton, 1.5% with zooplankton and 1.2% with fish. In Gdańsk basin, 83.2% is associated with zoobenthos, 7.5% with phytobenthos, 3.6% with phytoplankton, 3.2% with zooplankton and 2.5% with fish.  相似文献   

11.
The total 239+240Pu activities and 240Pu/239Pu atom ratios in surface soil samples (0–5 cm) in the Kumtag Desert in western Gansu Province, and in a soil core sample in Lanzhou were investigated using a sector-field ICP-MS. In the surface soil samples, 239+240Pu activities in fine particles (<150 μm) were 1.3–2.1 times of those in coarse particles (150 μm–1 mm) which ranged from 0.005 to 0.157 mBq/g. Atom ratios of 240Pu/239Pu in the surface soils ranged from 0.168 to 0.192 with a mean of 0.182 ± 0.008. The mean ratio was similar to the typical global fallout value although the Kumtag Desert was believed to have received close-in fallout derived from Chinese nuclear weapons tests mainly conducted in the 1970s. Furthermore, the mean 240Pu/239Pu atom ratio observed in the soil core sample in Lanzhou was similar to the typical global fallout value. In the soil core sample, 239+240Pu activities in the various layers ranged from 0.012 to 0.23 mBq/g, and the inventory of 239+240Pu (32.4 Bq/m2, 0–23 cm) was slightly lower than that expected from global fallout (42 Bq/m2) at the same latitude. Rapid downward migration of Pu isotopes was observed in Lanzhou soil core sample layers. The contribution of the 10-cm deep top layers of surface soils to total inventory was only 17%, while the contribution of deeper layers (10–23 cm) was as high as 83%. The 239+240Pu activity levels and 240Pu/239Pu atom ratios in soils in Gansu Province, China are similar to those in atmospheric deposition samples collected in the spring in recent years in Japan.  相似文献   

12.
Seawater samples were collected in Sagami Bay, western Northwest Pacific Ocean, and their (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were determined by alpha-spectrometry and sector field high-resolution ICP-MS. A few samples also were analyzed for (137)Cs activities. The (239+240)Pu inventory of 41.1 Bq m(-2) was equivalent to the expected cumulative deposition density of atmospheric global fallout at the same latitude and this inventory was considerably lower than inventories in the underlying sediment columns. This result indicated that a significant amount of (239+240)Pu has been removed into the underlying sediments through enhanced scavenging from the water column by the high fluxes of particles in this region. The atom ratio of (240)Pu/(239)Pu showed no notable variation from the surface to the bottom; the average value was 0.234+/-0.004. This atom ratio was significantly higher than the mean global fallout ratio of 0.18, proving the existence of close-in fallout plutonium originating from the Pacific Proving Grounds (PPG). The relative contributions of the global stratospheric fallout and the PPG close-in fallout were evaluated by using the two end-member mixing model. The contribution of the PPG close-in fallout was estimated to be 15.2 Bq m(-2), which corresponded to 37% of the (239+240)Pu inventory in the water column. Thus (239)Pu and (240)Pu from the two sources of global fallout and close-in fallout have been homogenized in the water masses in the western Northwest Pacific margin during the past three decades.  相似文献   

13.
Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/137Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the 239,240Pu/137Cs ratio in seawater exponentially increased with increasing depth (depth range: 100–1000 m). This finding suggests that the profiles of the 239,240Pu/137Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.  相似文献   

14.
Plutonium in Polish forest soils and the Bór za Lasem peat bog is resolved between Chernobyl and global fallout contributions via inductively coupled plasma mass spectrometric measurements of 240Pu/230Pu and 241Pu/239Pu atom ratios in previously prepared NdF3 alpha spectrometric sources. Compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/230Pu and 241Pu/239Pu co-vary and range from 0.186 to 0.348 and 0.0029 to 0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407 x [240Pu/239Pu] - 0.0413; r2 = 0.9924). Two-component mixing models are developed to apportion 239+240Pu and 241Pu activities; various estimates of the percentage of Chernobyl-derived 239+240Pu activity in forest soils range from < 10% to > 90% for the sample set. The 240Pu/230Pu - 241Pu/239Pu atom ratio mixing line extrapolates to estimate 241Pu/239Pu and the 241Pu/239+240Pu activity ratio for the Chernobyl source term (0.123 +/- 0.0007; 83 +/- 5; 1 May 1986). Sample 241Pu activities, calculated using existing alpha spectrometric 239+240Pu activities, and the 240Pu/230Pu and 241Pu/239Pu atom ratios, agree relatively well with previous liquid scintillation spectrometry measurements. Chernobyl Pu is most evident in locations from northeastern Poland. The 241Pu activities and/or the 241Pu/239Pu atom ratios are more sensitive than 240Pu/239Pu or 238Pu/239+240Pu activity ratios at detecting small Chernobyl 239+240Pu inputs, found in southern Poland. The mass spectrometric data show that the 241Pu activity is 40-62% Chernobyl-derived in southern Poland, and 58-96% Chernobyl in northeastern Poland. The Bór za Lasem peat bog (49.42 degrees N, 19.75 degrees E), located in the Orawsko-Nowotarska valley of southern Poland, consists of global fallout Pu.  相似文献   

15.
Historical 239Pu activity concentrations and 240Pu/239Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher 240Pu/239Pu atom ratios (> 0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the 240Pu/239Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location.  相似文献   

16.
Plutonium isotopes, 239Pu and 240Pu, were measured in liver samples from Surume squid using a sector-field high resolution ICP-MS after radiochemical purification. Surume squid samples were obtained from nine landing ports in Japanese inshore during fishery season from September to December 2002. Concentrations of 239Pu and 240Pu ranged from 1.5 to 28 mBq kg(-1) and 1.1 to 24 mBq kg(-1), respectively. Plutonium (239,240Pu) concentrations in liver were several thousand times higher than levels found in seawater. The concentration factor (CF) compared to seawater for 239,240Pu and 13 other elements ranged from 10(0) to 10(7). The CF values for 239,240Pu, V and Th were 10(2)-10(4). Pu had an intermediate CF between conservative and scavenged elements. 240Pu/239Pu atomic ratios in the squid liver ranged from 0.177 to 0.237 which were slightly higher than 0.178+/-0.014 for global fallout. The variations of 240Pu/239Pu atomic ratios in ocean currents with different source functions are important for interpreting high 240Pu/239Pu atomic ratios in Surume squid liver. It seems likely that Pu with high 240Pu/239Pu atomic ratio is continuously transported through the solubilization and seawater transport from the North Equatorial Current to Kuroshio and its branch, Tsushima Current. By assuming that Pu found in Surume squid liver is a mixture of global fallout Pu (0.178) and close-in fallout Pu with high 240Pu/239Pu atomic ratio (0.30-0.36) around Bikini Atoll, Pu contribution from Bikini close-in fallout Pu accounts for close to 35% of the whole plutonium in Surume squid liver. These results highlight that Surume squid is a useful organism for evaluating environmental Pu levels of larger sea area and facilitate the development of models to understand oceanic transport of close-in fallout Pu from Bikini Atoll.  相似文献   

17.
137Cs and (239+240)Pu data in seawater, sediment and biota from the regional seas of Asia-Pacific extending from 50 degrees N to 60 degrees S latitude and 60 degrees E to 180 degrees E longitude based on the Asia-Pacific Marine Radioactivity Database (ASPAMARD) are presented and discussed. 137Cs levels in surface seawater have been declining to its present median value of about 3 Bq/m3 due mainly to radioactive decay, transport processes, and the absence of new significant inputs. (239+240)Pu levels in surface seawater are much lower, with a median of about 6 mBq/m3. (239+240)Pu appears to be partly scavenged by particles and is therefore more readily transported down the water column. As with seawater, (239+240)Pu concentrations are lower than 137Cs in surface sediment. The median 137Cs concentration in surface sediment is 1.4 Bq/kg dry, while that of (239+240)Pu is only 0.2 Bq/kg dry. The vertical profiles of both 137Cs and (239+240)Pu in the sediment column of coastal areas are different from deep seas which can be attributed to the higher sedimentation rates and additional contribution of run-offs from terrestrial catchment areas in the coastal zone. Comparable data for biota are far less extensive than those for seawater and sediment. The median 137Cs concentration in fish (0.2 Bq/kg wet) is higher than in crustaceans (0.1 Bq/kg wet) or mollusks (0.1 Bq/kg wet). Benchmark values (as of 2001) for 137Cs and (239+240)Pu concentrations in seawater, sediment and biota are established to serve as reference values against which the impact of future anthropogenic inputs can be assessed. ASPAMARD represents one of the most comprehensive compilations of available data on 137Cs and (239+240)Pu in particular, and other anthropogenic as well as natural radionuclides in seawater, sediment and biota from the Asia-Pacific regional seas.  相似文献   

18.
Soil inventories of anthropogenic radionuclides were investigated in altitudinal transects in 2 French regions, Savoie and Montagne Noire. Rain was negligible in these 2 areas the days after the Chernobyl accident. Thus anthropogenic radionuclides are coming hypothetically only from Global Fallout following Atmospheric Nuclear Weapon Tests. This is confirmed by the isotopic signatures (238Pu/239+240Pu; 137Cs/239+240Pu; and 241Am/239+240Pu) close to Global Fallout value. In Savoie, a peat core age-dated by 210Pbex confirmed that the main part of deposition of anthropogenic radionuclides occurred during the late sixties and the early seventies. In agreement with previous studies, the anthropogenic radionuclide inventories are well correlated with the annual precipitations. However, this is the first time that a study investigates such a large panel of annual precipitation and therefore of anthropogenic radionuclide deposition. It seems that at high-altitude sites, deposition of artificial radionuclides was higher possibly due to orographic precipitations.  相似文献   

19.
Samples from a marine sediment core from the Irish Sea (54.416 N, 3.563 W) were analyzed for the isotopic composition of uranium, plutonium and americium by a combination of radiometric methods and AMS. The radiochemical procedure consisted of a Pu separation step by anion exchange, subsequent U separation by extraction chromatography using UTEVA® and finally Am separation with TRU® Resin.Additionally to radiometric determination of these isotopes by alpha spectrometry, the separated samples were also used for the determination of 236U/238U and plutonium isotope ratios by Accelerator Mass Spectrometry (AMS) at the VERA facility.  相似文献   

20.
Distributions of anthropogenic radionuclides (90Sr, 137Cs and 239+240Pu) in seabed sediment in the Japan Sea were collected during the period 1998–2002. Concentration of 90Sr, 137Cs and 239+240Pu in seabed sediment was 0.07–1.6 Bq kg−1, 0.4–9.1 Bq kg−1 and 0.002–1.9 Bq kg−1, respectively. In the northern basin of the sea (Japan Basin), 239+240Pu/137Cs ratios in seabed sediment were higher and their variation was smaller compared to that in the southeastern regions of the sea. The higher 239+240Pu/137Cs ratios throughout the Japan Basin were considered to reflect production of Pu-enriched particles in the surface layer and substantial sinking of particulate materials in this region. In the southern regions of the Japan Sea (<38°N), both inventories and 239+240Pu/137Cs ratios in sediment were larger than those in the other regions. In the southern Japan Sea, observations suggested that supply of particulate radionuclides by the Tsushima Warm Current mainly enhanced accumulation of the radionuclides in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号