首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
Behavior and analysis of Cesium adsorption on montmorillonite mineral   总被引:2,自引:0,他引:2  
The adsorption of Cs by montmorillonite and the effects of experimental conditions on adsorption were investigated by using 134Cs as a radioactive tracer. Additionally, the Cs-adsorbed and the modified montmorillonite were analyzed by X-ray Diffractometer System (XRD) and Scanning Electron Microscopy (SEM). The results showed that the adsorption of Cs by montmorillonite was efficient in the initial concentration (C0) of 30 μg/L Cs nitrate solution with 20 g/L montmorillonite at room temperature. In this condition, more than 98% Cs+ ions could be adsorbed at pH 8. The adsorption equilibrium was achieved within 5 min and the relationship between the concentration of Cs+ in aqueous solutions and adsorption capacities of Cs+ can be described by the Langmuir adsorption isotherm. The adsorption rate would decrease when temperature increase from 0 °C to 50 °C or in presence of coexistent K+, Na+ and Ca2+, while modification by (NH4)2SO4, [Ag(NH3)2]+, [Cu(NH3)4]2+ or 450 °C could improve the adsorption abilities of montmorillonite for Cs+. However, more than 89% of adsorbed Cs+ on montmorillonite could be desorbed by 2 mol/L HNO3 solutions. The XRD and SEM analysis further showed that the structure of the Cs-adsorbed or modified montmorillonite were different from that of the original one.  相似文献   

2.
The effect of the spatial variability of Kd on calculations of contaminant travel time in the vadose zone was determined. Depth discrete measurements of Kd were made for a suite of radionuclides (109Cd, 57Co, 60Co, 85Sr, 137Cs, and 88Y) utilizing a sediment core from the E-Area at the Savannah River Site. The Kd’s were ordered as 85Sr2+ < 137Cs+ < 109Cd2+ < 57Co2+ = 60Co2+ << 88Y3+ and the values generally fell below or near the lowest quartile of values reported in the literature. Correlations were generally weak between soil properties and Kd values. Most importantly, all of the Kd distributions could be reasonably approximated as log-normal. Deterministic and stochastic calculations of contaminant travel time to the water table were made. The deterministic calculations were based on each of three conceptual models of the vadose zone: complete stratification (17 strata, each with a different Kd), two strata (two sections of the vadose zone, each characterized by a single, average Kd), and unstratified (a single zone with an average Kd). Stochastic calculations were based on log-normal fits to the Kd data. The two strata model generally yielded travel times 2× greater than those in the completely stratified model. The unstratified model yielded travel times that were between 3 and 5 times greater than the completely stratified model. The stochastic mean travel times were comparable to those of the two strata model.  相似文献   

3.
This study focuses on the cesium-137 (137Cs) contamination in grass and in different compartments of oak trees growing in ecosystems, located in the zone with sub-mediterranean climate in South Bulgaria, characterized with high summer temperatures, low precipitation and often periods of drought. In 2008, three experimental sites - PP1, PP2, PP3 - were sampled in oak ecosystems from Maleshevska Mountain at 900 m above sea level. Samples from grass species and oak tree leaves, branches with different diameter, wood disks and bark were analyzed for 137Cs activity with γ-spectrometry. The soil-to-plant transfer factor (TF) values for 137Cs were estimated differentiating different tree compartments. Our findings showed relatively high activity concentrations of 137Cs in oak trees even 22 years after the Chernobyl accident. The grass under oak was less contaminated compared with the oak trees. The different organs of oak trees could be distinguished according to the 137Cs contamination as follows: bark > branches (d < 1 cm) > leaves > branches (d > 3 cm) > wood. The relatively higher contamination of bark compared with the new-formed biomass suggested that a significant part of 137Cs was accumulated as a result of direct adsorption at the time of the main contamination event. The TF values obtained and the presence of 137Cs in the branches, leaves and in the wood formed after 1986 confirmed that 22 years after the contamination, the main mechanism of 137Cs entrance in tree biomass was the root uptake.  相似文献   

4.
We record the distribution of 137Cs, K, Rb and Cs within individual Sphagnum plants (down to 20 cm depth) as well as 137Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris137Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher 137Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of 137Cs within the plants. The patterns of 137Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The 137Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10 cm) of the plant (r = 0.50). The strongest correlations were revealed between 137Cs and Rb (r = 0.89), and between 137Cs and stable Cs (r = 0.84). This suggests similarities between 137Cs and Rb in uptake and relocation within the Sphagnum, but that 137Cs differs from K.  相似文献   

5.
Caesium (137Cs and 134Cs) concentrations in higher fungi (Basidiomycetes) from Slovenia, north-west Yugoslavia, are reported following the Chernobyl accident. Special attention was paid to the Cortinariaceae, already known as Cs accumulators. The highest levels were found in Cortinarius armillatus, C. traganus (both inedible species) and Rozites caperata. The median concentration of 137,134Cs in R. caperata from over 40 sampling sites was about 22 kBq/kg dry weight. High levels were also found in Xerocomus badius and Laccaria amethystina.From the 137Cs/134Cs ratios, which reflect the depth of the mycelium and the excess 137Cs from historic pre-Chernobyl fallout, it may be surmised that radiocaesium levels in certain species will probably increase further next year and subsequently as Cs migrates down the soil profile.In addition, 110mAg was found at concentrations up to 500 Bq/kg dry weight in certain species known to be Ag accumulators, particularly Agaricaceae and Lycoperdaceae.  相似文献   

6.
The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil (<2 mm) samples were reacted with of 7.5 × 10−5 to 1.88 × 10−3 M of CsCl (pH 4.0) or 1.14 × 10−4 to 2.85 × 10−3 M of SrCl2 (pH 4.0) solutions at 25 °C. The sorption maximum capacity (qm) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg−1 soil) were significantly (p < 0.05) higher than those by the A and Bt1 horizons of the Kt and Cl soils (26.46 and 27.49 mmol Cs kg−1 soil in Kt soil and 34.83 and 29.96 mmol Cs kg−1 soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fep) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r2 = 0.97, p < 1.0 × 10−4; for Sr sorption, r2 = 0.82, p < 2.0 × 10−3). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil ? Kt soil > Tml soil > Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278 K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol−1 and from 15.2 to 22.4 kJ mol−1, respectively. Therefore, the limiting step of the Cs+ or Sr2+ sorption on the soils was diffusion-controlled processes. The reactive components, which are significantly correlated with the Langmuir sorption maxima of Cs and Sr by these soils, substantially influenced their kinetic rates of Cs and Sr sorption. The data indicate that among components of the subtropical and tropical soils studied, short-range ordered sesquioxides especially Al- and Fe-oxides complexed with organics play important roles in influencing their capacity and dynamics of Cs and Sr sorption.  相似文献   

7.
Sediments can act as a sink for contaminants in effluents from industrial and nuclear installations or when released from dumped waste. However, contaminated sediments may also act as a potential source of radionuclides and trace metals to the water phase due to remobilisation of metals as dissolved species and resuspension of particles. The marine mussel Mytilus edulis is a filter-feeding organism that via the gills is subjected to contaminants in dissolved form and from contaminants associated to suspended particles via the digestive system. In this paper the bioavailability of sediment-associated and seawater diluted Cs, Co, Cd and Zn radioactive tracers to the filtering bivalve M. edulis has been examined. The mussels were exposed to tracers diluted in ultrafiltered (<10 kDa) seawater (Low Molecular Mass form) or to tracers associated with sediment particles from the Stepovogo Fjord at Novaya Zemlya in short-term uptake experiments, followed by 1-month depuration experiments in flow-through tanks. A toxicokinetic model was fitted to the uptake and depuration data, and the obtained parameters were used to simulate the significance of the two uptake pathways at different suspended sediment loads and sediment-seawater distribution coefficients. The results of the model simulations, assuming steady state conditions, suggest that resuspended particles from contaminated sediments can be a highly significant pathway for mussels in the order 109Cd ≌ 65Zn < 134Cs < 60Co. The significance increases with higher suspended sediment load and with higher Kd. Furthermore, the experimental depuration data suggest that Cs is retained longer and Co, Cd and Zn shorter by the mussels when associated with ingested sediments, than if the metals are taken up from the low molecular mass (LMM) phase.  相似文献   

8.
In this study the total activity of 137Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 × 150 km2 mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m2. A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited 137Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of 137Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of 137Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated.  相似文献   

9.
Tests using reconstituted samples have been performed to assess the diffusive transport of 137Cs and 60Co through natural regolith materials from a region in South Australia being considered for a radioactive waste repository. A double diffusion cell apparatus made of polycarbonate resin was developed to estimate the effective diffusion (De) and sorption coefficients (Kd) that allowed large withdrawals from the source and collector cells and has enabled tests with low concentrations of radioactivity. An alternative to porous stainless steel filter plates has also been used to reduce uncertainty in test interpretation. Analysis of the transient data used a staged method of the Laplace transform to take into consideration the volume of the samples withdrawn from the apparatus during testing. At test completion samples were cut into slices and analysed for radionuclide concentration. Data obtained from the sliced samples confirmed that both numerical and experimental data produced acceptable mass balance. The De values obtained in this study were of the order of 10−6 cm2 s−1 for both species, higher than previously published data. The Kd values from the diffusion and batch sorption tests were in reasonable agreement for 137Cs, but an order of magnitude different for 60Co. The sorption of the latter radionuclide was strongly pH dependent, and this dependency during diffusion tests would benefit from further investigation.  相似文献   

10.
An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium (133Cs and 137Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133Cs mass concentrations with 137Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg−1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg−1 for Rb, 8.7 ± 4.36 mg kg−1 for 133Cs and 63.7 ± 24.2 kBq kg−1 for 137Cs. The mass concentrations of 133Cs correlated with 137Cs activity concentrations (r = 0.61). There was correlation between both 133Cs concentrations (r = 0.75) and 137Cs activity concentrations (r = 0.44) and Rb, but the 137Cs/133Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133Cs mass concentrations, 137Cs activity concentrations and 137Cs/133Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133Cs and 137Cs in sporocarps of S. variegatus is similar to other fungal species.  相似文献   

11.
Accumulation and clearance of 134Cs and 60Co by the Baltic bivalve Macoma baltica were experimentally investigated in a laboratory microcosmos. The nuclides were added to the water and the activities in bivalve flesh, shell, feces and sediment were determined at regular intervals. The uptake was quite rapid, 40% (Cs) and 55% (Co) of the final steady state values being attained after 24 h. The subsequent releases were also rapid, 50% (Cs) and 40% (Co), of the accumulated activity being lost within 6 days. The experiments demonstrated that the major intake route following short-term releases of activity will be from the water column and that the close relationship between activity in water and organism can thus be used for predictive purposes without the complication of radionuclide uptake from contaminated sediments. However, for longer periods, the subsequent intake of sediments will generate a significant exposure pathway for this deposit-feeding bivalve.  相似文献   

12.
Best estimates for the solid-liquid distribution coefficients (Kd) of radiostrontium and radiocaesium for various soil types, were derived from geometric means (GM) calculated from grouping soils by texture and organic matter content, and also using soil cofactors governing soil–radionuclide interaction. The Kd (Sr) GM for Sand, Loam, Clay and Organic groups were similar, although the value for the Sand group was significantly lower. The Sr cofactor approach, based on the ratios of cation exchange capacity (CEC) to Ca and Mg concentrations in the soil solution, leads to Kd (Sr) GM with a lower variability, from which best estimates could be proposed. The Kd (Cs) GM for Sand and Organic groups differed, although similar values were obtained for Loam and Clay groups. Grouping the Kd (Cs) according to the Radiocaesium Interception Potential (RIP) and the RIP divided by the K concentration in the soil solution also allows to suggest Kd (Cs) best estimates with a lower variability.  相似文献   

13.
The activity concentrations of 137Cs, 134Cs, 131I and 103Ru were determined separately in honey and pollen samples collected from a single bee colony during several months after the deposition of Chernobyl fallout. The source of each honey and pollen sample was determined by pollen analysis. Although the activity concentrations in honey and pollen varied with time, the concentrations of 137Cs and 134Cs were, in general, higher in pollen than in honey. For 103Ru and 131I, these differences were comparatively small. The mean 131 I/137Cs and 103Ru/137Cs ratios were about one order of magnitude higher in honey than in pollen. The mean 131I/103Ru ratio was about the same for honey and pollen. This observation, in the light of the corresponding nuclide ratios found in the deposition, suggests that 137Cs, 134Cs, 131I and 103Ru were taken up by the plant leaves and transported to nectar and pollen. The higher activity concentrations of 137Cs and 134Cs in pollen, relative to honey, indicate that these radionuclides behave analogously to potassium, which is also found in higher quantities in pollen.  相似文献   

14.
Fertilization with 2.5 t/ha limestone: (83% CaCO3, 8% MgO, 6% K2O, 3% P2O5) reduces the 137Cs transfer from spruce forest soil into plants like fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus) by a factor of 2–5 during at least 11 years as measured by the aggregated transfer factor Tag. In 1997 and 2006 these results were confirmed by additional measurements of the 137Cs transfer factor TF, related to the root zone (Oh horizon), which were explained by the selective sorption of 137Cs in the root zone by measurements of the Radiocaesium Interception Potential (RIP) in fertilized (RIP > 179 meq/kg) and non-fertilized soils (RIP < 74 meq/kg).  相似文献   

15.
The aims of the present research are to describe the amounts, and the variation with time, of 134Cs and 137Cs in spruce-twigs (P. abies karst.) and in the soil of a spruce forest in Switzerland following deposition of the Chernobyl fallout. The activity of the twigs was subdivided into 3 compartments: the activity on their surfaces (i.e. the activity which can be removed from the twigs along with their natural wax coating), the activity incorporated into the needles and, finally, the activity incorporated into the wood. These compartments were separately sampled 6 times over a period from 54 to 233 days after the Chernobyl incident. Twigs which sprouted in two successive years (1985, 1986) were sampled and were found to show different behaviours. The activities associated with the 1986 twigs were roughly constant with time, while those of the 1985 twigs decreased exponentially, with half-lives around 150 days. The mean activity associated with 1 g (dry) of 1985 twigs is 724 mBq 137Cs g−1, of which 58% is incorporated into the twig wood, 17% into the needles and 25% associated with the adhering aerosol. 137Cs on the surface of the needles was found to be water-insoluble. It is believed to be strongly adsorbed on to the soil-derived fraction of the aerosol residing on the needle surface and thus provides a tracer for studying the behaviour of natural aerosols on such surfaces.The same soil profile was measured before and after the Chernobyl incident, allowing direct comparison between nuclear weapons and Chernobyl fallout. The latter is mainly (56%) stored in the litter layer, with only 4% below a depth of 13 cm; it has penetrated into the soil to a much lesser extent than weapons fallout. The forest soil inventory of 137Cs showed 2600 Bq m−2 from nuclear weapons fallout and 6200 Bq m−2 from Chernobyl.The 134Cs/137Cs activity ratio of the Chernobyl fallout was found to be 0·58 ± 0·01; the activity ratios in the different compartments investigated prove that incorporation of Cs into spruce occurred exclusively by uptake through the needles. A rough estimate indicates that in a spruce forest the activity stored in the twigs is half that stored in the soil.  相似文献   

16.
We examined the long-term effects of a single application of potassium (K) fertilizer (100 kg K ha−1) in 1992 on 137Cs uptake in a forest ecosystem in central Sweden. 137Cs activity concentrations were determined in three low-growing perennial shrubs, heather (Calluna vulgaris), lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), and in four wild fungal species (Cortinarius semisanguineus, Lactarius rufus, Rozites caperata and Suillus variegatus). Uptake of 137Cs by plants and fungi growing on K-fertilized plots 17 years after application of the K fertilizer was significantly lower than in corresponding species growing in a non-fertilized control area. The 137Cs activity concentration was 21-58% lower in fungal sporocarps and 40-61% lower in plants in the K-fertilized area compared with the control. Over the study period, this decrease in 137Cs activity concentration was more consistent in plants than in fungi, although the effect was statistically significant and strongly pronounced in all species. The effect of K fertilization in reducing 137Cs activity concentration in fungi and plants decreased over time but was still significant in 2009, 17 years after fertilization. This suggests that application of K fertilizer to forests is an appropriate and effective long-term measure to decrease radiocaesium accumulation in plants and fungi.  相似文献   

17.
A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137Cs g−1 dry mass) or uncontaminated sediments (i.e. < 0.1 Bq g−1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter−1. The plants in uncontaminated sediments rapidly accumulated 137Cs from the water column and after 35 days of immersion had 137Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B.  相似文献   

18.
An uptake parameter u (L kg−1 d−1) and a loss rate parameter k (d−1) were estimated for the patterns of accumulation and loss of 133Cs by three fish species following an experimental 133Cs addition into a pond in South Carolina, USA. These u and k parameters were compared to similar estimates for fish from other experimental ponds and from lakes that received 137Cs deposition from Chernobyl. Estimates of u from ponds and lakes declined with increasing potassium concentrations in the water column. Although loss rates were greater in the experimental ponds, the times required to reach maximum Cs concentrations in fish were similar between ponds and lakes, because ponds and lakes had similar retentions of Cs in the water column. The maximum Cs concentrations in fish were largely determined by initial Cs concentrations in the water column. These maximum concentrations in fish and the times required to reach these maxima are potentially useful indicators for assessments of risks to humans from fish consumption.  相似文献   

19.
Lichen is a symbiosis between algae and fungi. They have for decades been used as bioindicators for atmospheric deposition of heavy metals, organic compounds and radioactive elements. Especially the species Cladonia alpestris and Cladonia rangiferina are important for the food chain lichen-reindeer-man.The concentration of 129I was determined in lichen samples (Cladonia alpestris) contaminated by fallout from atmospheric nuclear tests explosions and the Chernobyl accident. The samples were collected at Lake Rogen District (62.3°N, 12.4°E) in central Sweden in the periods 1961-1975 and 1987-1998, and analysed with accelerator mass spectrometry (AMS) at CNA (Seville) to study its distribution in different layers. Data on the 137Cs activity measured previously were also included in this study. The 129I concentration ranged from (0.95 ± 0.13) × 108 at g−1 in 1961 in the uppermost layer to (14.2 ± 0.5) × 108 at g−1 in 1987 in deepest layer. The 129I/137Cs atom ratio ranged between 0.12 and 0.27 for lichen samples collected in the period 1961-1975, indicating weapons tests fallout. For lichen samples collected between 1987 and 1998 the behaviour of 137Cs concentrations reflected Chernobyl fallout. The concentrations of the two radionuclides followed each other quite well in the profile, reflecting the same origin for both.From the point of view of the spatial distribution in the lichen, it appears that 129I was predominantly accumulated in the lowest layer, the opposite to 137Cs for which the highest amounts were detected systematically in the topmost layer of lichen. This vertical distribution is important for radioecology because lichen is the initial link in the food chain lichen-reindeer-man, and reindeer only graze the upper parts of lichen carpets.  相似文献   

20.
We summarize the patterns of 137Cs activity concentrations and transfer into fish and other biota in four small forest lakes in southern Finland during a twenty-year period following the Chernobyl accident in April 1986. The results from summer 1986 showed fastest accumulation of 137Cs into planktivorous fishes, i.e. along the shortest food chains. Since 1987, the highest annual mean values of 137Cs have been recorded in fish occupying the highest trophic levels, for perch (Perca fluviatilis) 13,600 Bq/kg (ww) and for pike (Esox lucius) 20,700 Bq/kg (ww). At the same time, activity concentrations of 137Cs in crustacean zooplankton and Asellus aquaticus have ranged between 1000 and 19,500 Bq/kg (dw). In 2006, 5-28% of the 1987 137Cs activity concentration levels were still present in perch and pike. Since 1989 their 137Cs activity concentrations in oligohumic seepage lakes have remained significantly higher than in polyhumic drainage lakes due to the increased transfer of 137Cs into fish in the seepage lakes with lower electrolyte concentrations, longer water retention times and lower sedimentation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号