首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The correlations among arsenic (As) accumulation in grains and straw, rates of radial oxygen loss (ROL), and porosity of roots using 25 rice cultivars were investigated based on two pot experiments: (1) soil with addition of 100 mg As kg?1 for analysis of As in grains and straw, and (2) deoxygenated solution for analyzing rates of ROL and porosity of roots. The results showed that there were great differences in grain As (0.71–1.72 mg kg?1) and straw As (15.6–31.7 mg kg?1), rates of ROL (7.40–13.24 mmol O2 kg?1 root d.w. h?1), and porosity (20.91–33.08%) among the cultivars. There were significant negative correlations between As in grains or straw and ROL and porosity, and significant positive correlations between rates of ROL and porosities, respectively. Rice cultivars with high porosities tended to possess higher rates of ROL, and had higher capacities for limiting the transfer of As to aboveground tissues.  相似文献   

2.
Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg−1 in soil) and a soil pot trial (control, 100 mg Cd kg−1), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg−1) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg−1) in a pot trial, and (3) rates of ROL (15-31 mmol O2 kg−1 root d.w. h−1). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw.  相似文献   

3.
In order to characterize the effect of vegetation on performance of constructed wetlands (CWs) treating low and high chlorinated hydrocarbon, two pilot-scale horizontal subsurface flow (HSSF) CWs (planted with Phragmites australis and unplanted) treating sulphate rich groundwater contaminated with MCB (monochlorobenzene, as a low chlorinated hydrocarbon), (about 10 mg L−1), and PCE (perchloroethylene, as a high chlorinated hydrocarbon), (about 2 mg L−1), were examined. With mean MCB inflow load of 299 mg m−2 d−1, the removal rate was 58 and 208 mg m−2 d−1 in the unplanted and planted wetland, respectively, after 4 m from the inlet. PCE was almost completely removed in both wetlands with mean inflow load of 49 mg m−2 d−1. However, toxic metabolites cis-1,2-DCE (dichloroethene) and VC (vinyl chloride) accumulated in the unplanted wetland; up to 70% and 25% of PCE was dechlorinated to cis-1,2-DCE and VC after 4 m from the inlet, respectively. Because of high sulphate concentration (around 850 mg L−1) in the groundwater, the plant derived organic carbon caused sulphide formation (up to 15 mg L−1) in the planted wetland, which impaired the MCB removal but not statistically significant. The results showed significant enhancement of vegetation on the removal of the low chlorinated hydrocarbon MCB, which is probably due to the fact that aerobic MCB degraders are benefited from the oxygen released by plant roots. Vegetation also stimulated completely dechlorination of PCE due to plant derived organic carbon, which is potentially to provide electron donor for dechlorination process. The plant derived organic carbon also stimulated dissimilatory sulphate reduction, which subsequently have negative effect on MCB removal.  相似文献   

4.
Sim WJ  Lee JW  Shin SK  Song KB  Oh JE 《Chemosphere》2011,82(10):1448-1453
We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L−1) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L−1), H-WWTPs (0.068-0.130 μg L−1) and P-WWTPs (0.015-0.070 μg L−1). Like the influents, the L-WWTPs (0.003-0.729 μg L−1) and the M-WWTPs (0.001-0.299 μg L−1) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L−1) and P-WWTPs (0.011 μg L−1 in one sample). The L-WWTPs (37.5-543 μg kg−1, dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg−1, dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs.  相似文献   

5.

Background

The association between metals in water and soil and adverse child neurologic outcomes has focused on the singular effect of lead (Pb), mercury (Hg), and arsenic (As). This study describes the complex association between soil concentrations of As combined with Pb and the probability of intellectual disability (ID) in children.

Methods

We used a retrospective cohort design with 3988 mother child pairs who were insured by Medicaid and lived during pregnancy and early childhood in South Carolina between 1/1/97 and 12/31/02. The children were followed until 6/1/08, using computerized service files, to identify the diagnosis of ID in medical records and verified by either school placement or disability service records. The soil was sampled using a uniform grid and analyzed for eight metals. The metal concentrations were interpolated using Bayesian Kriging to estimate concentration at individual residences.

Results

The probability of ID increased for increasing concentrations of As and Pb in the soil. The Odds Ratio for ID, for one unit change in As was 1.130 (95% confidence interval 1.048-1.218) for Pb was 1.002 (95% confidence interval 1.000-1.004). We identified effect modification for the infants based on their birth weight for gestational age status and only infants who were normal size for their gestational age had increased probability of ID based on the As and Pb soil concentrations (OR for As at normal weight for gestational age = 1.151 (95% CI: 1.061-1.249) and OR for Pb at normal for gestational age = 1.002 (95% CI: 1.002-1.004)). For normal weight for gestational age children when As = 22 mg kg−1 and Pb = 200 mg kg−1 the risk for ID was 11% and when As = 22 mg kg−1and Pb = 400 mg kg−1 the probability of ID was 65%.

Conclusion

The probability of ID is significantly associated with the interaction between Pb and As for normal weight for gestational age infants.  相似文献   

6.
Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III&V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III&V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5∼8 mg L−1, reduced As(V) uptake rate at low As(V) concentrations (<2 mg L−1), but increased As uptake rate at high As(V) concentrations (>6 mg L−1).  相似文献   

7.
Li W  Shi Y  Gao L  Liu J  Cai Y 《Chemosphere》2012,89(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L−1), while quinolones were prominent in sediments (65.5-1166 μg kg−1) and aquatic plants (8.37-6532 μg kg−1). Quinolones (17.8-167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

8.
The present study evaluates the tolerance and accumulation potential of Vitis vinifera ssp. sylvestris under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0–23 mmol L−1) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also measured the total copper, nitrogen, phosphorus, sulphur, calcium, magnesium, iron, potassium and sodium concentrations in the plant tissues. All the experimental plants survived even with external Cu concentrations as high as 23 mmol L−1 (1500 mg Cu L−1), although the excess of metal resulted in a biomass reduction of 35%. The effects of Cu on growth were linked to a reduction in net photosynthesis, which may be related to the effect of the high concentration of the metal on photosynthetic electron transport. V. vinifera ssp. sylvestris survived with leaf Cu concentrations as high as 80 mg kg−1 DW and growth parameters were unaffected by leaf tissue concentrations of 35 mg Cu kg−1 DW. The results of our study indicate that plants of V. vinifera ssp. sylvestris from the studied population are more tolerant to Cu than the commercial varieties of grapevine that have been studied in the literature, and could constitute a basis for the genetic improvement of Cu tolerance in grapevine.  相似文献   

9.
Wang Z  Liu Z  Yang Y  Li T  Liu M 《Chemosphere》2012,89(3):221-227
Polycyclic aromatic hydrocarbons (PAHs) concentrations were determined in sediments and three types of wetland plants collected from the intertidal flats in the Chongming wetland. The concentration of total PAHs in sediments ranged from 38.7 to 136.2 ng g−1. Surface sediment concentrations were higher in regions with plant cover than in bare regions. Rhizome-layer sediments (56.8-102.4 ng g−1) contained less PAHs than surface sediments (0-5 cm). Concentrations of PAHs in plant tissues ranged from 51.9 to 181.2 ng g−1, with highest concentrations in the leaves of Scirpus. Most of the PAHs in the leaves and other plant tissues were low molecular weight compounds (LMW, 2-4 rings), and a similar distribution pattern of PAHs in different types of plants was also observed. Source analysis indicated that plants and sediments both came from pyrogenic sources, but plants had additional petroleum contamination. The low ratio of benzo[a]anthracene over chrysene suggests that the wetland PAHs came mainly from long-distance atmospheric transportation. Significant bioaccumulation of PAHs from the sediments into plants was not observed for high molecular weight PAHs (HMW, 5-6 rings) in Chongming wetland. The small RCFs (root concentration factor from sediments) for HMW PAHs and large RCFs for LMW PAHs suggested that roots accumulated LMW PAHs selectively from sediments in Chongming wetland.  相似文献   

10.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

11.
The occurrence of cashmerane (DPMI), celestolide, phantolide, traesolide (ATII), galaxolide (HHCB) and tonalide (AHTN) in sewage and surface waters and their fate during wastewater treatment and anaerobic sludge digestion is investigated. AHTN and HHCB are the most important representatives and influent concentrations of 0.41-1.8 and 0.9-13 μg L−1 are observed. DPMI is detected in influent and effluent samples but in notably lower concentrations than AHTN and HHCB. Major sources of polycyclic musks are households, whereas industrial emitters seem to be of minor importance. This conclusion is supported by the analysis of selected industrial wastewaters (metal, textile and paper industry). Specific emissions of 0.36 ± 0.19 and 1.6 ± 1.0 mg cap−1 d−1 for AHTN and HHCB are calculated. Overall removal efficiencies between approx 50% and more than 95% are observed during biological wastewater treatment and removal with the excess sludge is the major removal pathway. Log KD values of 3.73-4.3 for AHTN, 3.87-4.34 for HHCB and 2.42-3.22 for DPMI are observed in secondary sludge. During sludge digestion no or only slight removal occurred. Mean polycyclic musk concentrations in digested sludge amounted to 1.9 ± 0.9 (AHTN), 14.2 ± 5.8 (HHCB), 0.8 ± 0.4 (ATII) and 0.2 ± 0.09 (DPMI) mg kg−1 dry matter. In the receiving water systems a comparable distribution as during wastewater treatment is observed. AHTN, HHCB and DPMI are detected in surface waters (ND (not detected) - < 0.04, ND - 0.32 and ND - 0.02 μg L−1) as well as AHTN and HHCB in sediments (ND - 20, ND - 120 μg kg−1). For HHCB an apparent KOC value of 4.1-4.4 is calculated for sediments. Major source for polycyclic musks in surface waters are discharges from wastewater treatment plants. For HHCB and DPMI 100% of the load observed in the sampled surface waters derive from discharges of treated wastewater.  相似文献   

12.
Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ?2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.  相似文献   

13.
Residues and dynamics of pymetrozine in rice field ecosystem   总被引:1,自引:0,他引:1  
Li C  Yang T  Huangfu W  Wu Y 《Chemosphere》2011,82(6):901-904
The fate of pymetrozine was studied in rice field ecosystem, and a simple and reliable analytical method for determination of pymetrozine in soil, rice straw, paddy water and brown rice was developed. Pymetrozine residues were extracted from samples, cleaned up by solid phase extraction (SPE) and then determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The average recovery was 81.2-88.1% from soil, 83.4-88.6% from rice straw, 87.3-94.1% from paddy water and 82.9-85.3% from brown rice. The relative standard deviation (RSD) was less than 15%. The limits of detection (LODs) of pymetrozine calculated as a sample concentration were 0.0003 mg kg−1 (mg L−1) for soil and paddy water, 0.001 mg kg−1 for brown rice and rice straw. The results of kinetics study of pymetrozine residue showed that pymetrozine degradation in water, soil, and rice straw coincided with C = 0.194e−0.986t, C = 0.044e−0.099t, and C = 0.988e−0.780t, respectively; the half-lives were about 0.70 d, 7.0 d and 0.89 d, respectively. The degradation rate of pymetrozine in water was the fastest, followed by rice straw. The highest final pymetrozine residues in brown rice were 0.01 mg kg−1, which was lower than the EU’s upper limit of 0.02 mg kg−1 in rice. Therefore, a dosage of 300-600 g a.i.hm−2 was recommended, which could be considered as safe to human beings and animals.  相似文献   

14.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

15.
A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg−1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg−1.  相似文献   

16.
Hwang IK  Kang HH  Lee IS  Oh JE 《Chemosphere》2012,88(7):888-894
The presence of polychlorinated dibenzo-p-dioxins and furan (PCDD/Fs) and brominated flame retardants (BFRs) in sludge generated at municipal wastewater treatment plants (MWTPs) and industrial wastewater treatment plants (IWTPs) was investigated. The concentrations of these pollutants were in the following ranges: 5.38-7947 ng kg−1 dw (0.02-49.9 ng WHO-TEQ kg−1 dw) for 17 PCDD/Fs, 17.5-66 761 μg kg−1 dw for 27 polybrominated diphenyl ethers (PBDEs), 1.55-29 604 μg kg−1 dw for hexabromocyclododecanes (HBCDs) (α-, β-, and γ-diastereomers), and 4.01-618 μg kg−1 dw for tetrabromobisphenol A (TBBPA). Generally, the levels of each compound in the sewage-sludge samples were higher than those in the industrial-sludge samples with some exceptions. The characteristic distribution profiles of target compounds were observed for different types of sludge and different sources of wastewater. High-chlorinated PCDD/Fs were dominant in all samples except those from the textile industry. The distribution of the BFRs in industrial-sludge samples varied, whereas that of the BFRs in sewage-sludge samples was consistent. The proportion of penta-BDEs in sewage sludge was higher than that in industrial sludge, even though BDE-209 was the most dominant congener in all the samples. For HBCDs, the distribution of diastereomers (α-, β-, and γ-HBCD) was similar across sludge samples that had the same source of wastewater and treatment processes.  相似文献   

17.
There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 103 L kg−1. Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg−1 and 2 × 10−4 kg g−1 respectively. Using an aqueous concentration range of 0.34–3.0 μg L−1, hazard quotients for human consumption of contaminated fish of 1.3 × 10−2 to 1.15 × 10−1 were derived.  相似文献   

18.
Meighan MM  Fenus T  Karey E  MacNeil J 《Chemosphere》2011,83(11):1539-1545
In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd2+ in hydroponic solution had initial translocation rates of at least 0.12 mmol kg−1 h−1 and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g−1 and extracting 1400 μg plant−1. When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g−1 min−1. The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.  相似文献   

19.
Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62 cf. 1.47 kg m−3) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240 mg L−1. The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58 mg L−1), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534 g mol−1) and aromaticity (5.35 vs. 4.67 L mg−1 m−1) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0 L mg−1 m−1 in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50 g mol−1 while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.  相似文献   

20.
Zhao X  Zhang B  Liu H  Qu J 《Chemosphere》2011,83(5):726-729
An integrated electro-oxidation and electrocoagulation system was designed and used to remove As(III) and F ions from water simultaneously. Dimensionally stable anodes (DSA), Fe electrodes, and Al electrodes were combined into an electrochemical system. Two pieces of DSA electrodes were assigned as the outside of the Fe and Al electrodes and were directly connected to the power supply as anode and cathode, respectively. The Fe and Al ions were generated by electro-induced process simultaneously. Subsequently, hydroxides of Fe and Al were formed. Arsenic ions are mainly removed by iron hydroxides and F ions are mainly removed by the Al oxides. At the initial concentration of 1.0 mg L−1, most of As(III) was transferred into As(V) within 40 min at current density of 4 mA cm−2, whereas F ions can be efficiently removed simultaneously. The effect of the ratio of Fe and Al plate electrodes and current density on the removal of As(III) and F was investigated. With one piece of Fe plate electrode and three pieces of Al plate electrodes, it is observed that As(III) with concentration of 1 mg L−1 and F with concentration of 4.5 mg L−1 can be removed and their final concentrations were below the values of 10 μg L−1 and 1.0 mg L−1, respectively within 40 min. Removal efficiency of As(III) increases with the increase of solution pH. However, in the pH range of 6-7, removal efficiency of F is the largest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号