首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.  相似文献   

2.
In the present study, the toxic effects of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and a selection of their respective metabolites were examined and compared to 2,4,6-trinitrotoluene (TNT) using the 15-min Microtox (Vibrio fischen) and 96-h freshwater green alga (Selenastrum capricomutum) growth inhibition tests. All of the compounds tested were less toxic than TNT. Using the Microtox assay, 2,6-DNT was more toxic than 2,4-DNT and the order of toxicity for 2,6-DNT and its metabolites was: 2,6-DNT > or = 2A-6NT > 2,6-DAT; whereas that for 2,4-DNT was: 4A-2NT > 2A-4NT > 2,4-DNT > 2,4-DAT. For the algal test, 2,4-DNT was more toxic than 2,6-DNT and the order of toxicity for 2,4-DNT and its metabolites was: 2,4-DNT > 2,4-DAT approximately equal to 4A-2NT = 2A-4NT. The order of toxicity for 2,6-DNT and its reduced metabolites using the algal test was very similar to the Microtox bioassay. These results demonstrate that the reduced metabolites of 2,6-DNT tested in this study were less toxic than that of the parent compound, but certain partially reduced metabolites of 2,4-DNT can be more toxic than the parent molecule. These data put into question the general hypothesis that reductive metabolism of nitro-aromatics is associated with a sequential detoxification process.  相似文献   

3.
Yoon JM  Oliver DJ  Shanks JV 《Chemosphere》2007,68(6):1050-1057
Biochemical and genetic studies of xenobiotic metabolism in the model plant Arabidopsis have significant potential in providing information for phytoremediation. This paper presents the toxicity of 2,6-dinitrotoluene (2,6-DNT) to Arabidopsis under axenic conditions, the fate and transformation of 2,6-DNT after uptake by the plant, and the effect of a putative glutathione S-transferase (GST), which is highly induced by 2,4,6-trinitrotoluene (TNT) in the previous study, on the detoxification of 2,6-DNT. 2,6-DNT had toxic effects on the growth of Arabidopsis based on whole seedling as well as root growth assays. Using [U- 14C]2,6-DNT, the recovery was over 87% and less than 2% accounted for the mineralization of 2,6-DNT in axenic liquid cultures during the 14d of exposure. About half (48.3%) of the intracellular radioactivity was located in the root tissues in non-sterile hydroponic cultures. 2-Amino-6-nitrotoluene (2A6NT) and two unknown metabolites were produced as transformation products of 2,6-DNT in the liquid media. The metabolites were further characterized by proton NMR spectra and the UV-chromatograms when the plant was fed with either 2,6-DNT or 2A6NT. In addition, polar unknown metabolites were detected at short retention times from radiochromatograms of plant tissue extracts. The GST gene of the wild-type of Arabidopsis in response to 2,6-DNT was induced by 4.7-fold. However, the uptake rates and the tolerance at different concentrations of 2,6-DNT and TNT were not significantly different between the wild-type and the gst mutant indicating that induction of the GST gene is not related to the detoxification of 2,6-DNT.  相似文献   

4.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

5.
Environmental Science and Pollution Research - Discharge of 2,4-dinitrotoluene (2,4-DNT) into the environment leads to a serious soil and water sources pollution problem, due to toxicity and...  相似文献   

6.
Water extracts of soil samples of the former ammunition plant “Tanne” near Clausthal-Zellerfeld, Lower Saxony, Germany, were investigated for highly polar oxidized 2,4,6-trinitrotoluene (TNT) metabolites. 0.4 to 9.0 mg/kg dry soil 2,4,6-trinitrobenzoic acid (TNBA) and 5.8 to 544 mg/kg dry soil 2-amino-4,6-dinitrobenzoic acid (2-ADNBA) were found. In addition to the oxidized metabolites, TNT, 4- and 2-aminodinitrotoluene (4- and 2-ADNT), and 2,4-dinitrotoluene (2,4-DNT) were extractable with water. Most interestingly, in one sample, 2-ADNBA represented the main contaminant. The origin of the oxidized nitroaromatics is unknown at this time. They might be generated chemically or photochemically. Furthermore, a biological synthesis seems possible.  相似文献   

7.
Cost-effective and environmentally acceptable methods are needed to remediate munitions-contaminated soil. Some perennial grass species are tolerant of soil contaminants and may promote remediation because of their high water use and extensive fibrous root systems. The effects of 2,4,6-trinitrotoluene (TNT) and its reduction product, 4-amino-2,6-dinitrotoluene (4ADNT), on germination and early seedling development of tall fescue (Festuca arundinacea Schreb.) were determined. Tall fescue seeds were germinated in nutrient-free agar containing 0-60 mg TNT litre(-1) or 0-15 mg 4ADNT litre(-1). Germination decreased linearly as TNT concentration increased but was not significantly affected by 4ADNT at these concentrations. Concentrations less than 30 mg TNT litre(-1) or 7.5 mg 4ADNT litre(-1) had little effect on seedling growth and development. Higher TNT or 4ADNT concentrations substantially delayed seedling development, caused abnormal radicle tissue development, and reduced secondary root and shoot growth. Seedling respiration rates decreased linearly with increasing TNT concentration. Experiments indicate that tall fescue may be grown in soils that maintain soil solution concentrations of 30 mg TNT litre(-1) or less.  相似文献   

8.
Dinitrotoluenes are used as propellants and in explosives by the military and as such have been found at relatively high concentrations in the soil. To determine whether concentrations of 2,4-dinitrotoluene (2,4-DNT) in soil are toxic to amphibians, 100 red-backed salamanders (Plethodon cinereus) were exposed to either 1500, 800, 200, 75 or 0mg 2,4-DNT/kg soil for 28 days and evaluated for indicators of toxicity. Concentrations of 2,4-DNT were less than targets and varied with time. Most salamanders exposed to concentrations exceeding 1050 mg/kg died or were moribund within the first week. Salamanders exposed to soil concentrations exceeding 345 mg/kg lost >6% of their body mass though no mortality occurred. Overt effects included a reduction in feed consumption and an increase in bucco-pharyngeal oscillations in salamanders. These results suggest that only high soil concentrations of 2,4-DNT have the potential to cause overtly toxic effects in terrestrial salamanders.  相似文献   

9.
We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.  相似文献   

10.

Explosive-contaminated soil is harmful to people’s health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (45) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil’s extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3 ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3 ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution’s acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  相似文献   

11.
The efficiency of vetiver grass (Vetiveria zizanioides) in removing 2,4,6-trinitrotoluene (TNT) from aqueous media was explored in the presence of a common agrochemical, urea, used as a chaotropic agent. Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), thus, enhancing plant TNT uptake. The primary objectives of this study were to: (i) characterize TNT absorption by vetiver in hydroponic media, and (ii) determine the effect of urea on chemically catalyzing TNT uptake by vetiver grass in hydroponic media. Results showed that vetiver exhibited a high TNT uptake capacity (1.026 mgg(-1)), but kinetics were slow. Uptake was considerably enhanced in the presence of urea, which significantly (p<0.001) increased the 2nd-order reaction rate constant over that of the untreated (no urea) control. Three major TNT metabolites were detected in the roots, but not in the shoot, namely 1,3,5-trinitrobenzene, 4-amino 2,6-dinitrotoluene, and 2-amino 4,6-dinitrotoluene, indicating TNT degradation by vetiver grass.  相似文献   

12.
Riefler RG  Medina VF 《Chemosphere》2006,63(6):1054-1059
Nitroglycerine (NG) and 2,4-dinitrotoluene (2,4-DNT) are propellants often found in soil and groundwater at military firing ranges. Because of the need for training with live ammunition, control or cleanup of these contaminants may be necessary for the continued use of these firing ranges. One inexpensive approach for managing sites exposed to these contaminants is the use phytoremedation, particularly using common or native grasses. In this study, the uptake of NG and 2,4-DNT from water by three common grasses, yellow nutsedge (Cyperus escalantus), yellow foxtail (Setaria glauca), and common rush (Juncus effusus), was investigated using hydroponic reactors. Rapid removal from solution by all grasses was observed, with yellow nutsedge removal rates being the highest. NG or 2,4-DNT accumulated in the tissues in all of the plants, except yellow foxtail did not accumulate NG. Higher concentrations were observed in killed roots, demonstrating the presence of plant-based enzymes actively transforming the contaminants. Yellow nutsedge was also grown in 2,4-DNT spiked soil. Significant uptake into the plants roots and leaves was observed and concentrations in the soil decreased rapidly, although 2,4-DNT concentration also decreased in the unplanted controls. In summary, the three grasses tested appear to be good candidates for phytoremediation of propellant contamination.  相似文献   

13.
Nepovim A  Hebner A  Soudek P  Gerth A  Thomas H  Smrcek S  Vanek T 《Chemosphere》2005,60(10):1454-1461
Four emergent plants (helophytes, synonyms emersion macrophytes, marsh plants, etc.) Phragmites australis, Juncus glaucus, Carex gracillis and Typha latifolia were successfully used for degradation of TNT (2,4,6-trinitrotoluene) under in vitro conditions. The plants took up and transformed more than 90% of TNT from the medium within ten days of cultivation. The most efficient species was Ph. australis which took up 98% of TNT within ten days. The first stable degradation products 4-amino-2,6-dinitrotoluene (4-ADNT) and 2-amino-4,6-dinitrotoluene (2-ADNT) were identified and analysed during the cultivation period. [14C] TNT was used for the detection of TNT degradation products and their compartmentalization in plant tissues after two weeks of cultivation. Forty one percent of 14C was detected as insoluble or bound in cell structures: 34% in roots and 8% in the aerial parts. These results open the perspective of using the above-mentioned plants for the remediation of TNT contaminated waters.  相似文献   

14.
In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 microm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed.  相似文献   

15.
Castaldi P  Santona L  Melis P 《Chemosphere》2005,60(3):365-371
The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.  相似文献   

16.
Prak DJ 《Chemosphere》2007,68(10):1961-1967
A key factor in selecting surfactants to enhance chemical or biological transformation or physical removal of an organic pollutant from contaminated soil is knowledge of the pollutant's solubility behavior in the surfactant solution. This study investigated the influence of nonionic surfactant structure on the solubility of 4-nitrotoluene (NT), 2,3-dinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene (TNT) at room temperature. For a series of alkyl phenol ethoxylates (Tergitol NP-8 to NP-40), decreasing the ethoxylate chain length increased the solubility of these nitrotoluenes by a factor of two or less in 10 g l(-1) surfactant solutions, but did not significantly change their molar solubilization ratios (MSR, e.g. 0.02 for TNT) or their micelle-water partition coefficients (K(m), e.g. 3.4 for TNT). For Tergitol NP-8 solutions ranging from 1.0 to 12.4 g l(-1), no enhancement in NT solubility was found, suggesting that the cloud point was reached. The MSRs for Tween 80 were higher than those of Tween 20 and the MSRs of Brij-58 were higher than those for Brij-35. When comparing solutes, NT had the highest solubility and MSR (0.28-0.41), while TNT had the lowest solubility and MSR (0.02-0.03). A linear relationship between K(m) values and octanol-water partition coefficients based on Triton X-100 predicted the logK(m) values within 0.5 of their measured values. A linear solvation free energy correlation for K(m) suggested the importance of solute volume and effective hydrogen bond basicity in the partitioning process while implying that the nitrotoluenes are solubilized in a polar portion of the micelle.  相似文献   

17.
Several organic compounds of high molecular weight present in soil interact with selenium and may act as active binding agents affecting its availability in soil, and, consequently, selenium uptake by plants. This study is aimed at investigating the effects of polysaccharides on selenium speciation in soil and on selenium absorption by Lactuca sativa L. plants. Three-week-old seedlings were transplanted into pots filled with soil, and sodium selenite at rates of 1.5 and 5mgSekg(-1) of soil, or sodium selenate at a rate of 1.5mgSekg(-1) of soil were applied. Carboxymethylcellulose (CMC) was added to the soil at rates of 0, 3 and 30mgkg(-1) of soil. After 48 and 110d from transplanting plants were harvested, separated into root and shoot, and fresh and dry matter weights were recorded. Total selenium was determined in both soil and plant samples. A sequential extraction was used to investigate the different Se oxidation states and assess the availability of Se in soil after the final harvesting. Both selenite and selenate were absorbed by roots, but plants amended with Se(VI+) showed higher selenium concentration than plants amended with Se(IV+). Selenite appears to be less mobile than selenate both in soil and plants. The addition of carboxymethylcellulose to soil decreased the amount of selenium absorbed by plants. CMC interacted with Se, making it less mobile as evidenced by the increase in the insoluble fractions. The insoluble Se forms in soil may represent environmental Se sinks potentially available for plants if the substrate is re-used for subsequent growth cycles and selenium species are mobilized as a result of biological and chemical processes.  相似文献   

18.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   

19.
Four plant species (oilseed rape, Brassica napus L.; red clover, Trifolium pratense L.; ryegrass, Lolium perenne L.; and tomato, Lycopersicon esculentum L.) were tested on ten soils varying widely in soil properties to assess molybdenum (Mo) toxicity. A larger range (66-fold-609-fold) of added Mo concentrations resulting in 50% inhibition of yield (ED50) was found among soils than among plant species (2-fold-38-fold), which illustrated that the soils differed widely in the expression of Mo toxicity. Toxicity thresholds based on soil solution Mo narrowed the variation among soils compared to thresholds based on added Mo concentrations. We conclude that plant bioavailability of Mo in soil depends on Mo solubility, but this alone did not decrease the variability in observed toxicity enough to be used in risk assessment and that other soil properties influencing Mo toxicity to plants need to be considered.  相似文献   

20.
Dinitrotoluenes (DNTs) are widely used in the manufacturing of explosives and propellants hence causing contamination of several terrestrial and aquatic environments. The present study describes biotransformation of 2,4-DNT and 2,6-DNT in marine sediment sampled from a shipwreck site near Halifax Harbour. Incubation of either 2,4-DNT or 2,6-DNT in anaerobic sediment slurries (10% w/v) at 10 degrees C led to the reduction of both DNTs to their corresponding diaminotoluene (2,4-DAT and 2,6-DAT) via the intermediary formation of their monoamine derivatives (ANTs). The production of diaminotoluene was enhanced in the presence of lactate for both DNT isomers. Using [(14)C]-2,4-DNT less than 1% mineralization was observed as determined by liberated (14)CO(2). Sorption of DNTs, ANTs, and DATs was thus investigated to learn of their fate in marine sediments. Under anaerobic conditions, sorption followed the order: DNTs (K(d)=8.3-11.7lkg(-1))>ANTs (K(d)=4.5-7.0lkg(-1))>DATs (K(d)=3.8-4.5lkg(-1)). Incubation of 2,4-DAT in aerobic sediment led to rapid disappearance from the aqueous phase. LC/MS analysis of the aqueous phase and the acetone sediment extract showed the formation of azo- and hydrazo-dimers and trimers, as well as unidentified polymers. Experiments with radiolabelled 2,4-DAT showed a mass balance distributed as follows: 22% in the aqueous phase, 24% in acetone extracts, and 50% irreversibly bound to sediment. We concluded that DNT in anoxic marine sediment can undergo in situ natural attenuation by reduction to DAT followed by oxidative coupling to hydrazo-oligomers or irreversible binding to sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号