首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物炭中溶解性有机质对污染物环境行为的影响   总被引:2,自引:0,他引:2  
生物炭的广阔应用前景吸引了研究者的广泛关注。生物炭中具有显著流动性的溶解性有机质(Biochar-derived dissolved organic matter,BDOM)作为一种高效的吸附载体,对污染物迁移的影响显著,是了解生物炭环境效应的关键。然而,原料来源及热解温度与BDOM的特性之间的关联性,以及BDOM与污染物相互作用的机制尚未明确。因此,文章通过综述原料及热解温度对BDOM特性的影响,以明确BDOM影响污染物环境行为机制的研究现状。有关研究表明:(1)生物质原料中木质素含量越高,BDOM C含量越高,官能团种类更加丰富,芳香性更强,而产率则越低;(2)随热解温度的升高,BDOM中C含量增加、芳香性增强,而产率及含氧官能团种类降低;(3)BDOM与疏水性有机污染物形成致密的类胶体结构,使疏水性有机污染物的溶解度提高,从而使疏水性有机污染物更容易被降解;(4)BDOM通过增加土壤中溶解性有机质的含量,从而形成新的吸附位点(如羧基官能团),以促进土壤对重金属或有机污染物的固持;(5)BDOM与重金属发生络合或氧化还原作用,影响重金属形态,从而改变土壤中重金属的毒性和生物有效性。该文可为全面评估生物炭在土壤污染修复应用中的功能提供参考。  相似文献   

2.
随着生物炭在农业和环境领域的应用逐渐增多,生物炭对环境中生物化学过程的影响也日益加深.本文利用循环伏安曲线,探究了不同热解温度下生物炭的电子传递方式.结果发现,在热解温度为400℃时,生物炭的电导率较低,而循环伏安曲线上存在明显的氧化还原峰,这表明生物炭的电子传递方式以官能团的氧化还原反应过程为主.随着热解温度升高,以含氧官能团为主的氧化还原活性物质含量降低,氧化还原峰的峰电流降低;同时,生物炭比表面积增大、导电性增强,循环伏安曲线形状逐渐变为梭形,响应电流也逐渐增大;这表明生物炭的电子传递方式逐渐转变为主要依靠生物炭导电性的方式.总之,循环伏安曲线可以定性地分析生物炭的电子传递方式,为探究生物炭不同电子传递方式对生物化学过程的影响提供了一定的研究基础.  相似文献   

3.
通过向体系中添加天然有机物以提高污染物化学氧化降解效率的技术近年得到广泛关注。研究表明,有机物既可通过促进过渡金属还原、络合过渡金属等机制加速经典氧化反应进程,也可直接活化氧化剂构建高级氧化体系。基于典型有机官能团对污染物化学氧化降解过程的促进作用,金属-有机框架材料得以发展及应用。该文综述了促进氧化反应的常见有机物种类及作用机制,以期为化学氧化技术进一步发展提供参考依据。  相似文献   

4.
化学老化后稻壳生物炭理化性质的改变及微观结构表征   总被引:2,自引:0,他引:2  
为研究化学老化对生物炭理化性质与微观结构的影响,本研究采用H_2O_2、HNO_3老化不同温度(350℃和550℃)下制备的稻壳生物炭,并利用元素分析、扫描电镜、漫反射红外光谱、X射线光电子能谱等测定比较生物炭老化前后表面理化性质及微观结构的变化.结果表明,经两种氧化剂老化后两种生物炭中O元素含量及O/C原子比均增加.与老化前生物炭相比,老化后两种生物炭中羟基、羧基、酮羰基、脂肪醚、酯基等含氧官能团的含量均发生不同程度的变化.通过漫反射红外与X射线光电子能谱分析相结合,发现两种稻壳生物炭经H_2O_2、HNO_3老化后均生成了羟基、羧基等含氧官能团,从而使得生物炭极性增加.此外,经HNO_3老化后稻壳炭表面生成硝基、硝酸盐等含氮基团,N元素含量亦显著增加.但氧化剂对两种温度下制备的生物炭中炭元素含量影响存在差异:经H_2O_2、HNO_3氧化后550℃制备的生物炭(R550)中C元素含量与芳香性降低;而经H_2O_2氧化后,350℃制备的生物炭(R350)中C元素含量与芳香性均上升.  相似文献   

5.
冯曦  朱敏  何艳 《生态毒理学报》2017,12(3):151-161
自然环境中,大多数氯代有机污染物厌氧还原脱氯反应是与土壤环境中一些生源要素的生物化学还原过程相伴生。有机污染物的种类、生物有效性以及毒性能够显著影响这些生源要素的转化,反过来,土壤中活跃的氧化还原反应也可以显著影响有机污染物的动力学转化过程。本文从氧化还原顺序上综述了反硝化过程、铁还原过程、硫酸盐还原过程和产甲烷过程对氯代有机污染物厌氧还原脱氯过程的影响与作用机制,旨在为氯代有机污染物在厌氧环境中还原脱氯的过程与机理的进一步研究、以及还原脱氯与微生物介导的生源要素氧化还原过程的耦合作用机制的揭示提供参考。  相似文献   

6.
腐殖质是一种主要由碳、氢、氧、氮等元素构成的具有氧化还原活性的有机质,存在丰富的官能团,其中以酚基和羧基含量最为丰富.腐殖质的氧化还原能力与氧化还原官能团的数目和种类有关.一直以来醌基被认为是腐殖质最重要的氧化还原官能团,对于醌基的测定是研究氧化还原官能团的重点.对于腐殖质氧化还原官能团的研究以化学、电化学和微生物等基本方法为主.本文尝试将这些方法与光谱法(如三维荧光光谱法、红外光谱法、核磁共振光谱法和电子自旋共振波谱法)相结合,不仅可以量化腐殖质氧化还原能力,还能对腐殖质氧化还原官能团具体组成有完整的解释,以便全面了解腐殖质的氧化还原官能团和氧化还原活性.  相似文献   

7.
环境持久性自由基(Environmental Persistent Free Radicals,EPFRs)是一种新型的环境风险物质,具有较高的反应活性和环境风险性,因其能在环境中持久存在且具有潜在的环境毒理效应而被广泛关注.本文概述了EPFRs的危害、种类、生成机理、影响EPFRs形成的各种因素,并介绍了EPFRs潜在的迁移转化;展望了未来的研究方向.  相似文献   

8.
以玉米秸秆、猪粪为原料,在不同温度下制备生物炭,并对其物化性质进行了表征.研究了厌氧条件下,Fe(Ⅱ)/生物炭体系对硝基苯的还原降解,并对降解条件进行了优化,对降解机理进行了讨论.结果表明,在Fe(Ⅱ)/生物炭体系中,Fe(Ⅱ)的还原性显著增强;原料、制备温度、Fe(Ⅱ)初始浓度、p H值都会对Fe(Ⅱ)的还原活性造成影响.其中在p H=7、固水比=1∶500、25℃,Fe(Ⅱ)和硝基苯的初始量分别为12 mmol·L~(-1)和0.08 mmol·L~(-1)的条件下,Fe(Ⅱ)/PBC700可将93%的硝基苯降解,为最佳降解体系.为了揭示Fe(Ⅱ)/生物炭体系还原硝基苯的关键结构与机理,分别研究了生物炭除灰处理和除有机质处理对Fe(Ⅱ)/生物炭体系还原能力的影响.发现两种处理都可使反应加速,由此推断,一方面生物炭灰分中的金属氧化物与Fe(Ⅱ)组成表面结合铁还原系统使Fe(Ⅱ)的还原性增强;另一方面生物炭的类石墨烯片层有机质结构起到了电子传递的作用,也可促进Fe(Ⅱ)对硝基苯的还原.本文为Fe(Ⅱ)还原去除有机污染物发现了一个新的载体.  相似文献   

9.
滇池底泥制备的生物炭对菲的吸附-解吸   总被引:4,自引:0,他引:4  
陈宁  吴敏  许菲  陈会会  王震字  宋秀丽  张迪  宁平  潘波 《环境化学》2011,30(12):2026-2031
将滇池草海底泥在不同烧制温度下制成生物炭,并用元素分析法表征其元素组成,溴化钾压片法表征其红外光谱,CO2和N2法表征其比表面积、孔体积、孔径.以菲作为模型化合物来研究有机污染物在生物炭上的吸附一解吸行为,以此深入了解生物炭施用中对有机污染物环境行为和风险的影响.结果表明,生物炭随烧制温度升高,芳香性升高、亲水性降低、...  相似文献   

10.
生物炭吸附有机污染物的研究进展   总被引:21,自引:0,他引:21  
生物炭(biochar)是指生物质在缺氧条件下热裂解产生的一种产物.由于其精致的孔隙结构和独特的表面化学性质,对环境介质中的有机污染物有超强的吸附能力,进而影响污染物的迁移与归宿.近年来生物炭对有机污染物的吸附特性及机理研究已成为环境科学领域的研究热点之一.本文从生物炭的典型性状、吸附有机污染物的机理、影响因素以及对土壤中有机污染物生物可给性的影响等方面进行了综述,并提出生物炭吸附有机污染物未来的研究方向.  相似文献   

11.
近年来基于硫酸根自由基的高级氧化技术被广泛应用于环境修复.过硫酸盐作为硫酸根自由基的前体物质,通过活化过硫酸盐产生高活性的硫酸根自由基,可以高效降解有机污染物.伴随着大量不同种类的过渡金属活化材料被先后研究应用,新的过渡金属活化过硫酸盐去除有机污染物的机制被不断发现,比如常见的过渡金属活化过硫酸盐产生自由基的自由基机制...  相似文献   

12.
在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.  相似文献   

13.
近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明:(1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol?d~(-1),显著高于对照处理的0.012 mmol?d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol?d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol?d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。  相似文献   

14.
两类生物炭的元素组分分析及其热稳定性   总被引:9,自引:0,他引:9  
通过元素分析、红外光谱和热重分析探讨了4种不同来源生物炭(玉米芯、香蕉杆、草海底泥、泥炭土)的理化性质及热稳定性.结果表明,生物炭的制备是一个逐渐从"软质碳"向"硬质碳"过渡的过程,制备过程中生物炭含碳量增加,芳香性增强,形成致密的碳结构,其中的含氧官能团被大量烧失,极性减弱,憎水性增强,不易被土壤中的微生物利用,有利于增加生物炭在土壤中的稳定性.热重实验显示,沉积物生物炭拥有比植物生物炭更好的热稳定性,这是因为沉积物中无机矿物对有机质起到了保护作用.  相似文献   

15.
一些表面吸附有机物的颗粒物在不完全燃烧的过程中会产生环境持久性自由基(EPFRs),但是目前关于这些EPFRs的水生生物毒性的报道还很有限.为了更好地了解EPFRs对水生生物的毒性作用,采用邻苯二酚-二氧化硅(CT-SiO_2)模拟体系在限氧条件下制备EPFRs,考察金属离子(Fe、Cu、Ni、Zn)及其氧化物、热解温度和CT/SiO_2质量比对颗粒物表面EPFRs生成的影响,并对EPFRs悬浮液中·OH的产生以及对发光细菌的急性毒性进行了测定.采用电子顺磁共振(EPR)对制备的EPFRs进行表征的结果表明,金属氧化物能够促进EPFRs的生成,而金属离子则恰好相反;热解温度以及CT/SiO_2质量比是EPFRs的生成过程的重要影响因素,对CT-SiO_2热解体系中EPFRs的生成浓度和类型具有至关重要的影响,EPFRs的生成浓度在热解温度为400℃且CT/SiO_2质量比为0.032时,达到最高值5.04×10~(15)spins·g~(-1).本研究所制备的EPFRs在环境空气中的半衰期,能够达到18—80 d,这可能是因为其与颗粒物的结合增加了其稳定性;发光细菌(P.phosphoreum T3spp.)的急性毒性结果表明,含有EPFRs的颗粒物对发光细菌的发光具有明显的抑制作用,发光抑制率与EPFRs浓度呈明显的剂量-效应关系,并推测可能与EPFRs悬浮液中活性氧物种(ROS)的产生有关.该结果为研究EPFRs在环境过程中的形成因素及其生物毒性提供了基础,为研究EPFRs的潜在环境风险提供了基础数据.  相似文献   

16.
近年来固体废物产生量日益增多,而多种固体废物协同处置能够提高生活垃圾热值,实现固体废物的有效减容.为了有效减少有机污染物的排放,本文对在焚烧过程中二噁英、多氯联苯和多环芳烃的形成机理进行了探究,并着重阐明了不同固废(市政污泥与生活垃圾、木材与生活垃圾等)混烧产生有机污染物的排放特征以及关键影响因素.研究结果表明,固废种类、添加比例、组分、含水率等能够影响有机污染物的生成.较高的Cl和金属元素会促进有机污染物的生成,而S和N元素则有抑制效应.根据垃圾焚烧的工艺条件及有机污染物的生成机理,发现除“3T+E”外,改变固废性质、加入抑制剂及末端处置等方法也能有效控制有机污染物的产生.通过预处理可降低固废含水率提高热值.焚烧系统中可加入碱性化合物、硅铝复合添加剂、Mg(OH)2、硫酸锰、铂和钯等抑制剂来减少PCDD/Fs、PCBs和PAHs等有机污染物的生成.末端控制主要包含吸附和催化分解,其中催化分解技术更加稳定、去除效率更高,但目前催化剂的低温活性还有待进一步提高.整体来看,在清洁生产的大背景下,拓展不同种类固体废物间的混烧,可达到节约能源、减少污染物排放等目的,但不同固废混烧过程中有机污染...  相似文献   

17.
雷竹落叶生物炭对微囊藻毒素的吸附性能   总被引:1,自引:0,他引:1  
为探索农业废弃物再生吸附材料对微囊藻毒素的吸附机制问题,采用典型农业废弃物雷竹落叶制备生物炭,研究适宜的制备工艺,探讨吸附条件和有机介质对微囊藻毒素-LR(MCLR)的吸附特性影响及其机制.结果表明,雷竹落叶竹叶生物炭的芳香性随着炭化温度和升温速率的升高而增加,极性指数则减小,同时比表面积也迅速增大,从0.25 m2·g-1到87.09 m2·g-1;竹叶生物炭对水体中MCLR具有较强的吸附能力,吸附量随炭化温度和升温速率的升高而增加,从72.27μg·g-1到624.47μg·g-1;吸附行为符合非线性Freundlich模型,且N指数和lnKF与芳香性和极性大小呈良好的线性关系;吸附效果受pH、反应温度和自然界溶解性有机质(DOMs)的影响,在pH值为3时有最大吸附量,当反应温度升高时吸附量减小,DOMs对MCLR的吸附有明显的竞争作用.适宜的制备工艺生成的雷竹落叶生物炭能有效地去除水体中MCLR.  相似文献   

18.
大气中汞的氧化还原反应对于其全球生物地球化学循环起着极其重要的作用,它促进了汞在全球范围内的扩散.汞主要以气态元素汞的形态释放到大气中,并经历复杂的均相和非均相化学反应,被氧化为活性气态汞和颗粒态汞;同时,活性气态汞也可经过光致还原反应光解生成气态元素汞.计算化学是一种基于理论方法利用计算软件来对化学现象和本质进行解释...  相似文献   

19.
腐殖质氧化还原和电子转移特性研究进展   总被引:6,自引:0,他引:6  
腐殖质在无氧和有氧条件下都具有一定的氧化还原能力,其氧化还原能力与氧化还原电势有关,而腐殖质的氧化还原电势受芳香度、取代基类型、取代位置等因素影响.除氧化还原能力外,腐殖质还能介导电子转移,其电子转移能力受腐殖质结构和所处环境两大因素影响.水体腐殖酸比土壤和沉积物腐殖酸具有相对较小的电子接受能力(EAC)和较大的提供电子能力(EDC);p H、温度、光照、氧气条件和微生物活动等因素均对腐殖质氧化能力和电子转移能力具有重要影响.腐殖质可以介导重金属和有机污染物的还原降解,不同重金属还原反应效率差异较大,其中Fe(Ⅲ)盐还原速率最高;有机污染物降解速率从大到小为六氯乙烷(HCE)>四氯化碳>三溴甲烷.目前在腐殖质氧化还原特性和电子转移能力研究中还存在诸多不足,需要广大学者做进一步探究.  相似文献   

20.
裂解温度对稻秆与稻壳制备生物炭表面官能团的影响   总被引:5,自引:0,他引:5  
以稻秆和稻壳为原料,在不同温度下(300、400、500、600、700℃)采用热裂解法制备生物炭,利用比表面积及孔径分析仪测定各生物炭比表面积,以傅里叶红外光谱图(FTIR)和Boehm滴定法分别定性和定量分析不同生物炭表面官能团的种类和数量,分析不同温度对不同原材料制备生物炭的表面官能团种类和数量的影响.结果表明,中、低温裂解条件(300、400、500℃)下,同温度稻壳生物炭(RC-H)比表面积显著高于稻秆生物炭(RC-S);高温裂解(600、700℃)条件下,同温度RC-S比表面积则更大.随裂解温度升高,两种原材料制备的生物炭比表面积均呈显著增大的趋势,其中稻秆在600℃下制备的RC-S比表面积最大,稻壳在700℃下制备的RC-H比表面积最大.FTIR分析结果显示,同一温度下两种材料制备的生物炭特征吸收峰基本相同,且表面基团种类大致相同,但RC-S较RC-H表面官能团更丰富,在热解过程中均形成了芳香环结构,且芳香化程度随裂解温度升高而增加.不同裂解温度下两种材料的生物炭表面官能团变化规律相似,主要表现为烷烃基随裂解温度升高而缺失,甲基(—CH3)和亚甲基(—CH2)逐渐消失,而芳香族化合物增加,芳香化程度增强.Bohem滴定结果表明,各裂解温度下RC-S的表面官能团总量和碱性官能团数量均高于RC-H,而各裂解温度下RC-S的酸性官能团含量均小于RC-H.随裂解温度升高,两种材料制备生物炭的表面官能团变化规律相似,表现为表面官能团总量均减少,酸性官能团含量降低,碱性官能团含量增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号