首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
2.
A full probabilistic Explosion Risk Analysis (ERA) is commonly used to establish overpressure exceedance curves for offshore facilities. This involves modelling a large number of gas dispersion and explosion scenarios. Capturing the time dependant build up and decay of a flammable gas cloud size along with its shape and location are important parameters that can govern the results of an ERA. Dispersion simulations using Computational Fluid Dynamics (CFD) are generally carried out in detailed ERA studies to obtain these pieces of information. However, these dispersion simulations are typically modelled with constant release rates leading to steady state results. The basic assumption used here is that the flammable gas cloud build up rate from these constant release rate dispersion simulations would mimic the actual transient cloud build up rate from a time varying release rate. This assumption does not correctly capture the physical phenomena of transient gas releases and their subsequent dispersion and may lead to very conservative results. This in turn results in potential over design of facilities with implications on time, materials and cost of a project.In the current work, an ERA methodology is proposed that uses time varying release rates as an input in the CFD dispersion simulations to obtain the fully transient flammable gas cloud build-up and decay, while ensuring the total time required to perform the ERA study is also reduced. It was found that the proposed ERA methodology leads to improved accuracy in dispersion results, steeper overpressure exceedance curves and a significant reduction in the Design Accidental Load (DAL) values whilst still maintaining some conservatism and also reducing the total time required to perform an ERA study.  相似文献   

3.
Computational Fluid Dynamics (CFD) codes are widely used for gas dispersion studies on offshore installations. The majority of these codes use single-block Cartesian grids with the porosity/distributed-resistance (PDR) approach to model small geometric details. Computational cost of this approach is low since small-scale obstacles are not resolved on the computational mesh. However, there are some uncertainties regarding this approach, especially in terms of grid dependency and turbulence generated from complex objects. An alternative approach, which can be implemented in general-purpose CFD codes, is to use body-fitted grids for medium to large-scale objects whilst combining multiple small-scale obstacles in close proximity and using porous media models to represent blockage effects. This approach is validated in this study, by comparing numerical predictions with large-scale gas dispersion experiments carried out in DNV GL's Spadeadam test site. Gas concentrations and gas cloud volumes obtained from simulations are compared with measurements. These simulations are performed using the commercially available ANSYS CFX, which is a general-purpose CFD code. For comparison, further simulations are performed using CFX where small-scale objects are explicitly resolved. The aim of this work is to evaluate the accuracy and efficiency of these different geometry modelling approaches.  相似文献   

4.
Computational fluid dynamics (CFD) simulations have been conducted for dense gas dispersion of liquefied natural gas (LNG). The simulations have taken into account the effects of gravity, time-dependent downwind and crosswind dispersion, and terrain. Experimental data from the Burro series field tests, and results from integral model (DEGADIS) have been used to assess the validity of simulation results, which were found to compare better with experimental data than the commonly used integral model DEGADIS. The average relative error in maximum downwind gas concentration between CFD predictions and experimental data was 19.62%.The validated CFD model was then used to perform risk assessment for most-likely-spill scenario at LNG stations as described in the standard of NFPA 59A (2009) “Standard for the Production, Storage and Handling of Liquefied Natural Gas”. Simulations were conducted to calculate the gas dispersion behaviour in the presence of obstacles (dikes walls). Interestingly for spill at a higher elevation, e.g., tank top, the effect of impounding dikes on the affected area was minimal. However, the impoundment zone did affect the wind velocity field in general, and generated a swirl inside it, which then played an important function in confining the dispersion cloud inside the dike. For most cases, almost 75% of the dispersed vapour was retained inside the impoundment zone. The finding and analysis presented here will provide an important tool for designing LNG plant layout and site selection.  相似文献   

5.
This paper presents a risk assessment methodology for high-pressure CO2 pipelines developed at the Health and Safety Laboratory as part of the EU FP7 project CO2Pipehaz.Traditionally, consequence modelling of dense gas releases from pipelines at major hazard impact levels is performed using integral models with limited or no consideration being given to weather bias or topographical features of the surrounding terrain. Whilst dispersion modelling of CO2 releases from pipelines using three-dimensional CFD models may provide higher levels of confidence in the predicted behaviour of the cloud, the use of such models is resource-intensive and usually impracticable. An alternative is to use more computationally efficient shallow layer or Lagrangian dispersion models that are able to account for the effects of topography whilst generating results within a reasonably short time frame.In the present work, the proposed risk assessment methodology for CO2 pipelines is demonstrated using a shallow-layer dispersion model to generate contours from a sequence of release points along the pipeline. The simulations use realistic terrain taken from UK topographical data. Individual and societal risk levels in the vicinity of the pipeline are calculated using the Health and Safety Laboratory's risk assessment tool QuickRisk.Currently, the source term for a CO2 release is not well understood because of its complex thermodynamic properties and its tendency to form solid particles under specific pressure and temperature conditions. This is a key knowledge gap and any subsequent dispersion modelling, particularly when including topography, may be affected by the accuracy of the source term.  相似文献   

6.
While the effect of the safety gap on explosions is well known, little has been carried out to evaluate the effect of the safety gap on dispersion of gas releases, this paper evaluates the effect of safety gap on gas dispersion for a cylindrical Floating Liquefied Natural Gas (FLNG) vessel. The realistic ship-shaped and circular FLNG platforms are established and used for the detailed CFD based analysis; rather than the structural and hydrodynamics advantages of mobility, stability and cost efficiency etc., this study aims to investigate the safety of gas dispersion on the cylindrical FLNG and compare the safety gap effects on different configurations. A series of different safety gap configurations are evaluated for gas dispersion occurring in near field for the traditional FLNG while both near field and far field gas dispersion simulations are conducted on the cylindrical one. The overall results indicate that the safety gap is effective in reducing the gas cloud size in both FLNG configurations, however, when it comes to the gas dispersion in the far field against the leakage point, the safety gap increases the gas cloud size in the cylindrical FLNG vessel on the contrary.  相似文献   

7.
A methodology to perform consequence analysis associated with liquefied natural gas (LNG) for a deepwater port (DWP) facility has been presented. Analytical models used to describe the unconfined spill dynamics of LNG are discussed. How to determine the thermal hazard associated with a potential pool fire involving spilled LNG is also presented. Another hazard associated with potential releases of LNG is the dispersion of the LNG vapor. An approach using computational fluid dynamics tools (CFD) is presented. The CFD dispersion methodology is benchmarked against available test data. Using the proposed analysis approach provides estimates of hazard zones associated with newly proposed LNG deepwater ports and their potential impact to the public.  相似文献   

8.
To be able to perform proper consequence modelling as a part of a risk assessment, it is essential to be able to model the physical processes well. Simplified tools for dispersion and explosion predictions are generally not very useful. CFD tools have the potential to model the relevant physics and predict well, but without proper user guidelines based on extensive validation work, very mixed prediction capability can be expected. In this article, recent dispersion validation effort for the CFD tool FLACS–HYDROGEN is presented. A range of different experiments is simulated, including low-momentum releases in a garage, subsonic jets in a garage with stratification effects and subsequent slow diffusion, low momentum and subsonic horizontal jets influenced by buoyancy, and free jets from high-pressure vessels. LH2 releases are also considered. Some of the simulations are performed as blind predictions.  相似文献   

9.
Gas leakage is a matter of concern for several industries such as oil and gas, mining, food, and healthcare. When the industry considers gas detectors, the main questions are: How many gas detectors are required? Where is the best location to install them? To answer these questions Computational Fluid Dynamics (CFD) simulations and optimisation procedures are employed to calculate the plume location and plume volume to better position the gas detectors. We investigated how the optimisation cell size for the set covering problem can be calculated based on a given explosion overpressure threshold. Resorted by the multi-energy explosion model, we calculate the flammable cloud volume associated with a pre-defined overpressure value. The cloud volume is applied in the solution of the set covering problem and an optimal set for the gas detectors is obtained. The final gas detector network (number and location of the devices) is validated against CFD simulations for small releases. The results provide evidence that the optimal gas detector networks is able to detect gas leaks within a feasible time.  相似文献   

10.
高压管道天然气泄漏扩散过程的数值模拟   总被引:5,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

11.
Having a risk analysis of harmful releases over mountainous terrains through wind tunnel experiment is a frontier problem in China. In this paper, a straight-flow wind tunnel is applied to simulate the atmospheric boundary layer and research the motion of high-sulfur gas released to atmosphere when accidental releases occur in a gathering station over the mountainous terrain. After an analysis of hourly concentration in the field accident for eight wind directions, experimental results reveal that nearby concentration fields are dominated by wind and far-field concentration distribution is dominated by topography, which leads to complete levels of consequence impact for the personnel risk inside and around the gathering station. Based on CFD techniques, a three-dimensional modelling was established in comparison with the wind tunnel experiment, which suggests that CFD prediction had underestimated the near-field gas concentration and the performance could not precisely match actual risks the gathering station causes to the mountainous terrain, which leads to a modified equation for numerical prediction. Instead of proposing a lower personnel risk evaluation obtained through the use of CFD techniques, the wind tunnel experiment offers a new choice for the consequence impact analysis for the petrochemical industry in China.  相似文献   

12.
Some major toxic gas release accidents demonstrate the urgent need of a systematic risk analysis method for individuals exposed to toxic gases. A CFD numerical simulation and dose–response model combined approach has been proposed for quantitative analysis of acute toxic gas exposure threats. This method contains four steps: firstly, set up a CFD model and monitor points; secondly, solve CFD equations and predict the real-time concentration field of toxic gas releases and dispersions; thirdly, calculate the toxic dose according to gas concentration and exposure time; lastly, estimate expected fatalities using dose–response model. A case study of hydrogen sulfide releases from a gas gathering station has been carried out using a three dimension FLUENT model. Acute exposure fatalities have been evaluated firstly with a simplified ideal model which assumes workers stay at original exposure location without moving. Then a comparison has been made with a more realistic model which assumes workers start evacuating according to a prearranged course as soon as hydrogen sulfide detection system alarms. These two models represent the worst and best emergency response effects, respectively, and the analysis results demonstrate significant differences. Results indicate that the CFD and dose–response combined approach is a good way for estimating fatalities of individuals exposed to accidental toxic gas releases.  相似文献   

13.
A new and simple method for locating emission source was proposed in this work based on gas dynamic dispersion information. The simulation of the unsteady state dispersion of leakage gas emission from the geosequestration project showed that the transportation process of emission gases in the atmosphere is similar to wave propagation, and the time parameter of the dispersion wave is linearly related to the downwind distance. Therefore, monitoring the dispersion wave at different downwind positions can be used to estimate the leakage source position. An estimation formula for locating emission sources was derived. First, an estimation formula for locating emission sources was derived under some initial assumptions. Then, the deviation of the location formula was investigated using a computational fluid dynamics (CFD) model and analytic solution to get the offset distance under different conditions. The results showed that the average distance is stable for a certain atmosphere and terrestrial conditions. This method needs no more than 3 sensors’ dynamic information to locate the emission source, and hence it is highly useful for conditions with limited sensors. A numerical test demonstrated that the absolute error of the source estimation is within the range of 1–30 m. Finally, experimental tests were conducted to verify the feasibility of the source location with dispersion waves. Therefore, the dispersion wave monitor is a potentially simple and feasible way to estimate the source location for gas emission event management with limited sensors in the process industries.  相似文献   

14.
The risk assessment for safety-critical, complex systems is a very challenging computational problem when it is performed with high-fidelity models, e.g. CFD, like in the case of accidental gas releases in congested systems. Within this framework, a novel CFD approach, named Source Box Accident Model, has been recently proposed to efficiently model such phenomena by splitting the simulation of the gas release and its subsequent dispersion in the system in two steps. In this view, the present paper proposes a non-intrusive, Proper Orthogonal Decomposition-Radial Basis Functions reduced order model that exploits the two-step nature of the SBAM approach, to mimic the behaviour of the original, long-running CFD model code at a significantly lower computational cost. Moreover, the paper presents a methodology combining the bootstrap and unscented transform approaches to efficiently assess the ROM uncertainty in the safety-critical simulation output quantities of interest, e.g. the flammable volume. The results obtained in a test case involving a high pressure, accidental gas release in an off-shore Oil & Gas plant are in very satisfactory agreement with those produced by CFD, with a relative error smaller than 10% and a reduction in the computational time of about three orders of magnitude.  相似文献   

15.
This paper is the second installment of a paper published on Process Safety and Environment Protection in 2013, which evaluates the Air-Fin-Cooler (AFC) forced ventilation effect over natural ventilation inside congested LNG process train, i.e., modularized LNG, considering the Air Change per Hour (ACH) using Computational Fluid Dynamics (CFD) analysis. This second paper evaluates the effect of forced ventilation on gas cloud dispersion using CFD in order to evaluate possible design measures, such as safety distance in trains and whether to shut down the AFC in case of releases. The results of this evaluation show that gas cloud accumulation is reduced by AFC induced air flow in the case of shorter separation distances between modules. Based on the results, two design measures are proposed, i.e., keep AFC running during emergency and train orientation against prevailing wind direction.  相似文献   

16.
The siting of facilities handling liquefied natural gas (LNG), whether for liquefaction, storage or regasification purposes, requires the hazards from potential releases to be evaluated. One of the consequences of an LNG release is the creation of a flammable vapor cloud, that may be pushed beyond the facility boundaries by the wind and thus present a hazard to the public. Therefore, numerical models are required to determine the footprint that may be covered by a flammable vapor cloud as a result of an LNG release. Several new models have been used in recent years for this type of simulations. This prompted the development of the “Model evaluation protocol for LNG vapor dispersion models” (MEP): a procedure aimed at evaluating quantitatively the ability of a model to accurately predict the dispersion of an LNG vapor cloud.This paper summarizes the MEP requirements and presents the results obtained from the application of the MEP to a computational fluid dynamics (CFD) model – FLACS. The entire set of 33 experiments included in the model validation database were simulated using FLACS. The simulation results are reported and compared with the experimental data. A set of statistical performance measures are calculated based on the FLACS simulation results and compared with the acceptability criteria established in the MEP. The results of the evaluation demonstrate that FLACS can be considered a suitable model to accurately simulate the dispersion of vapor from an LNG release.  相似文献   

17.
The present study examined the accidental spill of ethylene oxide, and a sensitivity analysis of the corresponding consequences was conducted using computational fluid dynamics (CFD). A validation of the gas dispersion CFD model against the experimental data sets included in the model evaluation protocol (MEP) was performed. The effect of the variability of the wind velocity on the extension of the hazardous areas and pool evaporation characteristics was evaluated. Additionally, the mitigation effects of the dike walls surrounding a spill were discussed. CFD simulation results have shown that the mitigation effect of dike walls is determined by their influence on both gas dispersion and pool evaporation and depends strongly on wind velocity in terms of toxic impact distances.  相似文献   

18.
Accidental releases of hazardous gases in chemical industries can pose great threats to public security. The computational fluid dynamics (CFD) model is commonly applied to predict gas dispersion in complex structured areas. It can provide good accuracy but it is too time-consuming to be used in emergency response. To reduce computation time while keep acceptable accuracy, this paper proposes several fused CFD-interpolation models which combine CFD model with different interpolation methods. Spline, linear and nearest interpolation methods are used. A CFD simulations database is created ahead of time which can be quickly recalled for emergency usage and unknown situations can be predicted instantly by interpolation methods instead of time-consuming CFD model. Fused models were applied to a case study involving a hypothetical propane release with varying conditions and validated against CFD model. The validation shows that prediction accuracy of these fusion models is acceptable. Among these models, CFD-Spline interpolation model performs best. It is faster than CFD model by a factor of 75 and is potentially a good method to be applied to real-time prediction.  相似文献   

19.
CFD-based simulation of dense gas dispersion in presence of obstacles   总被引:1,自引:0,他引:1  
Quantification of spatial and temporal concentration profiles of vapor clouds resulting from accidental loss of containment of toxic and/or flammable substances is of great importance as correct prediction of spatial and temporal profiles can not only help in designing mitigation/prevention equipment such as gas detection alarms and shutdown procedures but also help decide on modifications that may help prevent any escalation of the event.The most commonly used models - SLAB (Ermak, 1990), HEGADAS (Colenbrander, 1980), DEGADIS (Spicer & Havens, 1989), HGSYSTEM (Witlox & McFarlane, 1994), PHAST (DNV, 2007), ALOHA (EPA & NOAA, 2007), SCIPUFF (Sykes, Parker, Henn, & Chowdhury, 2007), TRACE (SAFER Systems, 2009), etc. - for simulation of dense gas dispersion consider the dispersion over a flat featureless plain and are unable to consider the effect of presence of obstacles in the path of dispersing medium. In this context, computational fluid dynamics (CFD) has been recognized as a potent tool for realistic estimation of consequence of accidental loss of containment because of its ability to take into account the effect of complex terrain and obstacles present in the path of dispersing fluid.The key to a successful application of CFD in dispersion simulation lies in the accuracy with which the effect of turbulence generated due to the presence of obstacles is assessed. Hence a correct choice of the most appropriate turbulence model is crucial to a successful implementation of CFD in the modeling and simulation of dispersion of toxic and/or flammable substances.In this paper an attempt has been made to employ CFD in the assessment of heavy gas dispersion in presence of obstacles. For this purpose several turbulence models were studied for simulating the experiments conducted earlier by Health and Safety Executive, (HSE) U.K. at Thorney Island, USA (Lees, 2005). From the various experiments done at that time, the findings of Trial 26 have been used by us to see which turbulence model enables the best fit of the CFD simulation with the actual findings. It is found that the realizable k-? model was the most apt and enabled the closest prediction of the actual findings in terms of spatial and temporal concentration profiles. It was also able to capture the phenomenon of gravity slumping associated with dense gas dispersion.  相似文献   

20.
Hazardous areas are defined as a result of a variety of variables as storage temperature, pressure, leak orifice size, physical properties of flammable substance, and wind characteristics. The potential formation of an explosive atmosphere must be accurately assessed to ensure process safety. Therefore, computational fluid dynamics (CFD) arises as an important tool for accurate predictions as recommended by the international standard IEC 60079-10-1 (2015). This study aims to analyze the influence of wind velocity magnitude and direction on the hazardous area classification. The authors evaluated the extent and volume for methane, propane, and hydrogen leakages from a CFD model. For each flammable gas, the wind velocity magnitude and direction were regularly varied. The outcomes show that the behavior of the plume size as the wind varies mainly depends on the gas concentration. Counter-flow wind directions lead to zero relative velocity closer to the release point, which concentrates the gas, and wind in the release direction promotes a higher dilution of the gas cloud increasing the hazardous extent while decreases the volume. As a consequence, the wind also influences the zone type, which was accurately predicted from CFD simulations and significant differences were found when compared to the standard analyses. These differences are, to some extent, related to the consideration of wind velocity effects on the gas jet release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号