首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Major erosion of urban stream channels is found in smaller basins in the North Texas study area with contributing drainage areas of less than ten square miles. Within these basins, four basic channel types are identified based on bed and bank lithologies: alluvial banks and bottoms, alluvial banks and gravel bottoms, alluvial banks with rock bottoms, and rock banks with rock bottoms. Most channels (75 percent) have alluvial banks with gravel or rock bottoms. Channel slopes are steep (.38 to.76 percent). Rock consists predominantly of shale and limestone. Channel cross sections are divided into the following four zones based on weathering, scour and entrainment mechanisms: soil zone, slake zone, rock zone and bed material zone. Erodibility of the channels is determined using multiple techniques including reach hydraulics and stream power computations, submerged jet testing, slab entrainment thresholds, and slake durability rates. Procedures are based on both empirical and modeled time series estimates of channel erosion. Field and modeled results support rates of erosion of up to four inches per year. Rates are tied to flow regime, climate, and type of channel bed and banks.  相似文献   

2.
Beach erosion on Cinnamon Bay in the U.S. Virgin Islands results from storm waves in the North Atlantic. The net trend of erosion, however, is due to local environmental degradation. Reef die-back, initiated during the period of high sedimentation associated with 18th and 19th century sugar cane cropping, has reduced the rate of generation of new coral sands. Sand losses to deep water during periods of storm waves are not replenished. Engineering measures designed to check erosion at Cinnamon Bay have had little effect in this environment of low wave energies, but sand deficiency. The appropriate environmental focus for management of reef-beach systems is reef health and thus, water quality.  相似文献   

3.
ABSTRACT: This study evaluated the impact of selected soil surface characteristics on infiltration rates and sediment production from interrill erosion from loam soil. Treatments were two different grass species (crested wheatgrass and intermediate wheatgrass), three levels of grass cover (30, 50, and 80 percent), four levels of rock cover (5, 10, 15, and 20 percent), and six levels of simulated trampling (10 to 60 percent of the respective plot area by 10 percent increments). Results indicated that plots with sod forming grass infiltrated only slightly more water than plots with bunchgrass, though the differences were significant. Trampling reduced infiltration rates significantly. On uncompacted soil, infiltration rates increased as percentage of rock cover increased. Trampling gradually destroyed this relationship however. Rock cover did not significantly affect sediment production. The tradeoff between vegetal cover and rock cover was affected by simulated trampling. Once trampling disturbance reached 20 percent, no relationship between vegetal cover and rock cover existed. Trampling was the most important factor influencing infiltration rates, explaining 35 to 48 percent of the variation in infiltration rates. The most important factor influencing sediment production was grass cover, which explained 40 to 62 percent of the variations associated with sediment yield at various trampling percentages. Results strongly suggest that, for slopes and soils as used here, adequate watershed protection may be obtained by maintaining 50 percent protective ground cover. Additional validation studies are recommended.  相似文献   

4.
Segura, Catalina and Derek B. Booth, 2010. Effects of Geomorphic Setting and Urbanization on Wood, Pools, Sediment Storage, and Bank Erosion in Puget Sound Streams. Journal of the American Water Resources Association (JAWRA) 46(5):972-986. DOI: 10.1111/j.1752-1688.2010.00470.x Abstract: Interrelationships between urbanization, the near-riparian zone, and channel morphology were examined in 44 lowland stream reaches in the Puget Lowlands of western Washington, United States. Both the degree of urbanization and channel type control channel response to a range of instream and riparian conditions. Some of these relationships are not evident in lumped datasets (i.e., with all channel types and/or degrees of urbanization) and highlight the importance of fluvial geomorphology in determining channel response. We found that in low-urbanized watersheds dominated by forced pool-riffle and plane-bed morphologies, the frequency and distribution of large woody debris (LWD), pool spacing, sediment storage, and bank erosion have a strong relationship with channel confinement and characteristics of near-riparian vegetation. In contrast, high-urbanized reaches dominated by simplified morphologies are substantially less sensitive to the condition of the near-riparian zone (e.g., size of the near-riparian vegetation and the level of channel confinement), due to the common disconnection of stream and floodplain caused by the placement of stabilizing structures in the banks. These structures are typically placed to prevent erosion; however, they also result in fewer LWD and pools, less sediment storage, and higher potential for incision.  相似文献   

5.
ABSTRACT: Contrary to the general trend of only a few actual trades occurring within point‐nonpoint source water quality trading programs in the United States, two trading projects in the Minnesota River Basin, created under the provisions of National Pollutant Discharge Elimination System (NPDES) permits, have generated five major trades and numerous smaller ones. In this paper, these two projects are described to illustrate their origins, implementation, and results. It was found that several factors contributed to the relatively high number of trades in these projects, including the offsetting nature of the projects (hence a fixed number of credits that the point sources were required to obtain), readily available information on potential nonpoint source trading partners, and an effectively internal trading scheme used by one of the two projects. It was also found that long term structural pollution control measures, such as streambank stabilization, offered substantial cost savings over point source controls. Estimates of transaction costs showed that the total costs of the trading projects were increased by at least 35 percent after transaction costs were taken into account. Evidence also showed that in addition to pollution reduction, these two trading projects brought other benefits to the watershed, such as helping balance environmental protection and regional economic growth.  相似文献   

6.
The United States has lost about half its wetland acreage since European settlement, and the effectiveness of current wetland mitigation policies is often questioned. In most states, federal wetland laws are overseen by the U.S. Army Corps of Engineers, but Michigan administers these laws through the state's Department of Environmental Quality (MDEQ). Our research provides insight into the effectiveness of the state's implementation of these laws. We examined wetland mitigation permit files issued in Michigan's Upper Peninsula between 2003 and 2006 to assess compliance with key MDEQ policies. Forty-six percent of files were out of compliance with monitoring report requirements, and forty-nine percent lacked required conservation easement documents. We also conducted site assessments of select compensatory wetland projects to determine compliance with MDEQ invasive plant species performance standards. Fifty-five percent were out of compliance. We found no relationship between invasive species noncompliance and past site monitoring, age of mitigation site, or proximity to roads. However, we found wetland restoration projects far more likely to be compliant with performance standards than wetland creation projects. We suggest policy changes and agency actions that could increase compliance with wetland restoration and mitigation goals.  相似文献   

7.
ABSTRACT: Concern over the pollution of our lakes and streams has become a major issue in the United States. Sedimentation from sigricultural lands has been identified as a significant factor in water pollution. Some citizens suggest that government should force compliance with soil loss standards, while others suggest that we ask farmers to voluntarily comply. Related questions are “DO farmers think government should be involved in controlling erosion and protecting water quality?”“To what extent should government be involved?” What level of government should be involved? Federal? State? Local?“Why should pay for water quality projects?” Farmers from a small watershed in northeastern Indiana were interviewed before and after a major demonstration project. Their responses suggest that farmers feel that individual landowners should be responsible for controlling erosion and agricultural nonpoint source water pollution. However, over 60 percent of the study fanners indicated that the federal government should play an important role, in terms of both technical and financial assistance.  相似文献   

8.
This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th century, followed by regrowth and net forest carbon sequestration in the 20th century. Recent data and knowledge of the general behavior of forests after disturbance suggest that the rate of forest carbon sequestration is declining. A goal of an additional 100 to 200 Tg C/yr of forest carbon sequestration is achievable, but would require investment in inventory and monitoring, development of technology and practices, and assistance for land managers.  相似文献   

9.
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width.  相似文献   

10.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

11.
12.
Timber was harvested on South Fork of Thomas Creek, White Mountains of Arizona, USA, for the first time in 1978–1979. This caused significant increases in annual flow volumes and annual instantaneous peak flows. North Fork remained untouched, but both streams were in disequilibrium before harvest time. Due to wetter years during the postharvest period, North Fork also experienced some flow increases, but the difference was not significant. Flow increases cause increased erosion in disequilibrium channels. While in South Fork channel cross sections enlarged by 10% since preharvest time, those in North Fork enlarged by only 2.5%. The number of knickpoints tripled in South Fork, which was about double that in North Fork. Knickpoint development resulted in destruction of the natural control structures (log steps and transverse gravel bars) in South Fork (47%), while in North Fork they increased by 23%. Knickpoints are scarps on the channel bed that have the appearance of gully headcuts. The tripling of the number of knickpoints signifies that adjustment processes of the bed profile are intensified drastically in South Fork. The geomorphic changes signify that due to increases in discharge, the extent of disequilibrium is exacerbated in South Fork. Yet, volumes of erosion are relatively small, as will be sediment volumes leaving the watershed at a given time, because of the stepwise sediment transport occurring in this ephemeral stream.  相似文献   

13.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

14.
Knight, Kris W., Richard C. Schultz, Cathy M. Mabry, and Thomas M. Isenhart, 2010. Ability of Remnant Riparian Forests, With and Without Grass Filters, to Buffer Concentrated Surface Runoff. Journal of the American Water Resources Association (JAWRA) 46(2):311-322. DOI: 10.1111/j.1752-1688.2010.00422.x Abstract: Riparian forest buffers established according to accepted conservation practice standards have been recommended as one of the most effective tools for mitigating nonpoint source pollution. The midwestern United States is characterized by many kilometers of narrow, naturally occurring forests along streams. However, little is known about the relative effectiveness of these remnant forests compared with these newly established buffers. This study compared the ability of naturally occurring remnant forests with and without adjacent planted grass filters to buffer concentrated flow paths (CFPs) originating in crop fields along first- and second-order streams in three northeast Missouri watersheds. Remnant forests breached by runoff through CFPs were narrower than those that dispersed 100% of the CFPs. Remnant forests with adjacent grass buffers were nearly twice the width as those without grass filters. We also found that CFPs, which developed within remnant forests and at the base of in-field grass waterways, were potential sources of sediments to streams. Methods to mitigate these CFPs warrant further investigation. Our study suggests that although these natural remnant forests provide substantial buffering capacity, both improved management and/or the addition of an adjacent grass filter would improve water quality by reducing sediment loss to streams. Inferences can be used to inform the design and management of similar conservation buffer systems within the region.  相似文献   

15.
Ten years ago in the United States, per capita water use for all purposes was about 1500 gallons a day. By the year 2000, our population will have grown from 200 to 350 million, and each person, in effect, will be using 2500 gallons per day, This could result in our using as much as 75 percent of the total average runoff from US. Rivers
Perhaps as much as 40,000 cubic miles of saline water are stored in rocks at various depths underlying extensive areas of the United States, according to the U.S. Geological Survey. This water, once considered of no value and even a nuisance, now represents a vast potential source of water, either as replacement of fresh water for certain uses or as the raw material for desalting techniques which have been studied intensively in recent years. Desalination creates new water in the sense that saline water, never before used, becomes part of our water economy.  相似文献   

16.
ABSTRACT: Streambank protection projects are intended to prevent streambank erosion, thereby preventing streambank failure and maintaining a desirable channel alignment. Streambank erosion is a natural process of unaltered, dynamic river systems, and protection projects seek to impose stability on this natural system. The environmental impacts of such projects are primarily changes to terrestrial and aquatic habitats and to aesthetics. Adverse environmental impacts have been minimized and enhancement of existing habitat and aesthetics have been achieved through the development of new, innovative designs or modifications to existing designs and through use of construction and maintenance practices that promote habitat and aesthetics. Designs based on channel flow characteristics, e.g., revetments using a variety of structural materials, can result in preservation of wildlife habitat by reducing the use of structural protection by matching the erosion potential of flow at the bank with the protection capability of the materials used. Designs based on streambed stabilization prevent bank failure caused by bank undermining, result in preservation or establishment of streamside vegetation, and enhance aesthetics. Protection schemes that manage and preserve floodplains, berms, and riparian areas preserve the natural condition of the floodplain area. Designs based on deflection of erosive flows, e.g., dikes, minimize disturbance to the bank vegetation and create low-velocity aquatic habitats. Use of vegetation for bank protection is most effective when used in combination with structural components. Construction and maintenance practices can be scheduled and modified to minimize impacts to floodplain areas and to enhance wildlife habitat while preserving the integrity of the protection structure.  相似文献   

17.
Water pollution through loss of topsoil from farmland continues to be a major problem, despite nearly 50 years of providing farmers technical and financial assistance for soil and water conservation. The technology for controlling erosion and water pollution is available, but farmers have been slow in implementing control practices. Past research has shown that farmers tend to be unaware of the seriousness of the erosion problem on their own operations. Using a random sample of farmers from central Iowa, the relationship is examined between awareness of a soil erosion problem and the use of conservation tillage. Results indicate that awareness of a soil erosion problem effects the use of conservation tillage, and that awareness can be enhanced by experiential educational strategies such as the development and implementation of a soil and water conservation plan.  相似文献   

18.
ABSTRACT: Nonirrigated crop yields and forage production are limited by low and variable precipitation in the southern Great Plains. Precipitation variation involves production risks, which can be reduced by considering probability of precipitation, precipitation retention, and soil erosion under various production systems. The objective of this study was to probabilistically quantify the impact of precipitation variations, land use, cropping, and tillage systems on precipitation retention and soil erosion. Five 1.6 ha watersheds that had 3 to 4 percent slopes, and similar silt loam soils were selected. One was kept in native grass, and the others were planted into winter wheat (Triticum aestivum L.) under different cropping and tillage systems. Daily runoff and soil erosion were measured at the outlet of each watershed. Precipitation distributions exhibited great seasonal and interannual variations, and precipitation retention distributions resembled those of precipitation. Cropping and tillage systems affected precipitation retention but much less than did precipitation variations. Available soil water storage, which was largely controlled by ET, played an important role in retaining precipitation. This indicates that cropping systems should be adjusted to precipitation patterns, if predictable, for better soil water use. Land use and cropping and tillage systems had a much greater impact on soil erosion than on precipitation retention. Soil erosion risks, which were proportional to the levels of tillage disturbance, were mainly caused by a few large storms in summer, when surface cover was low. This study explored a novel approach for evaluating production risks associated with insufficient precipitation retention and excessive soil erosion for certain crops or cropping systems under assumed precipitation conditions.  相似文献   

19.
ABSTRACT: In urbanizing areas, the usual increase in flood flows also increases erosional capability of streams. In order to evaluate such tendencies quantitatively, 25 stream reaches were studied, and were classified as to whether erosion of the channel and banks was light, medium, or heavy. Analysis of characteristics indicated that (1) densely developed areas are correlated with greater erosion, (2) wide stream buffers of natural vegetation are correlated with lesser erosion, and (3) there is no definite correlation of erosion to slope or characteristics of soil. Erosional stream instability can be avoided by retention of storm water runoff, creating additional channel roughness or reducing channel slope during floods by drop structures, such as culverts, which restrict flow. Channel straightening and general bank protection should be minimized in such streams. Design of culverts should take such effects into consideration.  相似文献   

20.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号