首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

2.
将废粘土砖加工成粗细骨料,用于配制全废砖再生轻骨料混凝土.检测结果表明:所用废砖粗细骨料属轻骨料范畴,但其吸水率较大,且细骨料级配不良.试验表明:本试验配合比体系中,净水灰比为0.42,体积砂率为50%时最佳;以全废砖配制的再生砖轻骨料混凝土的强度发展规律与普通轻骨料混凝土类似,均有随水泥用量提高而强度提高的趋势,但随着所配制的混凝土强度等级的提高,再生轻骨料混凝土的强度提高趋势下降.以全废砖为骨料适合配制强度等级LC30及以下的再生轻骨料混凝土.  相似文献   

3.

The aggregate composed of cement clinker, an intermediate cement product, improves strength development and mass transfer resistance of concrete. Fly ash (FA) is a supplementary cementitious material that can be substituted by cement. This study investigated the strength development of highly FA-substituted mortar mixed with cement clinker fine aggregate (CL) and tested its inhibitory effect against the alkali–silica reaction (ASR). In addition to these, this study provides the testing results of evaluating the effects of using cement clinker fine aggregate on delayed ettringite formation (DEF), which can be problematic for precast concrete products. The study results revealed that at 91 days of age, in the case of 80% replacement ratio of fly ash to cement, using CL exhibited similar strength development as mortar with limestone fine aggregate and no FA substitution. Furthermore, mortars with 70% and 80% FA substitution did not exhibit clear ASR-induced expansion even at 182 days of age. Lastly, mortar using clinker fine aggregate could suppress DEF-induced expansion at 182 days of age, which was similar to the effect obtained using FA. These results can promote the utilization of CL resources for concrete and using clinker as fine aggregate in precast concrete products.

  相似文献   

4.
An experimental investigation was carried out to study the effects of various percentages of fine/coarse tire waste and microsilica at various temperatures on the compressive strength of concrete. The compressive strength of concrete mixtures made with tire rubber was assessed statistically with those of concrete containing microsilica and conventional concretes in order to evaluate the usefulness of recycling rubber waste as a component of concrete. Results confirmed that the recipe and processing temperature of concrete cubes influence the compressive strength values. Generally, the use of microsilica or fine rubber mixed with microsilica as aggregate replacement of 5% by volume improved the compressive strength of concrete processed at a temperature of 150°C. The addition of coarse rubber did not achieve any increase in strength when used as an aggregate replacement at any percentage. Moreover, the reductions in the compressive strength of concrete mixes at higher temperatures were much smaller for the fine rubber with 5 vol% microsilica than those for control and coarse rubber mixes. The specimens made with fine rubber and 5 vol% microsilica at elevated temperatures above 400°C appeared to show very similar compressive strength values. The use of fine rubber in building construction could help save energy and reduce costs and solve the solid waste disposal problem posed by this type of waste.  相似文献   

5.
Bottom ashes from a north Italian municipal solid waste incinerator (MSWI) were vitrified at 1450 degrees C without adding any vitrifying agent, then ground and sieved to different granulometry (ranging from 50 microm to 20mm), and used as filler, sand, or aggregate for concrete. Samples were characterized via slump tests (UNI 9418), alkali-silica reactivity (UNI 8520/22 and ASTM C 298), and compression strength tests (UNI 6132, 6132/72, 6686/72), and compared to reference samples obtained without vitrified bottom ashes (VBA). Our results show that vitrified bottom ashes are unsuitable as a sand substitute; however, concrete containing up to 20 wt.% of VBA filler used as a substitute for cement and up to 75 vol.% of VBA as a substitute for natural aggregate retains the same mechanical properties as reference samples. Alkali-silica or other detrimental reactions were not observed in VBA-containing concrete samples after a period of two years. The results of this work demonstrate that vitrified bottom ashes from MSWI can be used instead of natural aggregates in mortar and concrete production.  相似文献   

6.
This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.  相似文献   

7.
The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste.This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances.  相似文献   

8.
Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 32 factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5–10 wt.%), 7-day compressive strength (26–36 MPa) and 28-day compressive strength (32–44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content.  相似文献   

9.
Non-biodegradable plastic aggregates made of polycarbonate (PC) and polyethylene terephthalate (PET) waste are used as partial replacement of natural aggregates in mortar. Various volume fractions of sand 3%, 10%, 20% and 50% are replaced by the same volume of plastic. This paper investigates the physical and mechanical properties of the obtained composites. The main results of this study show the feasibility of the reuse of PC and PET waste aggregates materials as partial volume substitutes for natural aggregates in cementitious materials. Despite of some drawbacks like a decrease in compressive strength, the use of PC and PET waste aggregates presents various advantages. A reduction of the specific weight of the cementitious materials and a significant improvement of their post-peak flexural behaviour are observed. The calculated flexural toughness factors increase significantly with increasing volume fraction of PET and PC-aggregates. Thus, addition of PC and PET plastic aggregates in cementitious materials seems to give good energy absorbing materials which is very interesting for several civil engineering applications like structures subjected to dynamic or impact efforts. The present study has shown quite encouraging results and opened new way for the recycling of PC waste aggregate in cement and concrete composites.  相似文献   

10.
Use of rubble from building demolition in mortars   总被引:4,自引:0,他引:4  
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.  相似文献   

11.
The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete.  相似文献   

12.
This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength.A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions.Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties.Compressive strength is clearly affected by the quality of recycled aggregates. If the water–cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength.The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.  相似文献   

13.
The technical properties of cement mortars containing natural fine aggregate that is replaced by lead blast furnace slag at 25 and 35% level were assessed at fixed water-to-cement (W/C) ratio and at fixed flow table value. The leachabilities of some toxic elements from the cement mortars were also assessed to test the environmental suitability of the slag for use in preparation of cement mortar. At fixed W/C ratio, the strength of the mortar decreased with increase of the slag content. On the other hand, at fixed consistency, strength increased with increasing slag content in the mortar composition. The concentrations of some toxic elements in the leachates collected from the mortars containing slag were slightly higher than for the control mortar, but the concentrations in the leachates remained within the regulatory limits for recycling in construction applications. For most elements, leaching from a mortar containing 35% of slag was similar to that from a mortar containing 25% of slag. Therefore, 35% of natural sand can be beneficially replaced with Pb slag to produce cement mortar without affecting the mechanical and leaching properties studied in this work.  相似文献   

14.
Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The properties of concretes containing waste glass as fine aggregate were investigated in this study. The strength properties and ASR expansion were analyzed in terms of waste glass content. An overall quantity of 80 kg of crushed waste glass was used as a partial replacement for sand at 10%, 15%, and 20% with 900 kg of concrete mixes. The results proved 80% pozzolanic strength activity given by waste glass after 28 days. The flexural strength and compressive strength of specimens with 20% waste glass content were 10.99% and 4.23%, respectively, higher than those of the control specimen at 28 days. The mortar bar tests demonstrated that the finely crushed waste glass helped reduce expansion by 66% as compared with the control mix.  相似文献   

15.
Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study.  相似文献   

16.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

17.
Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world’s largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.  相似文献   

18.
The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 °C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.  相似文献   

19.

This article investigates the suitability of utilizing end of life rubber tyre particles in concrete as fine aggregate. Rubber ash and rubber fibers were used to develop two series of rubber ash concrete (series I) and hybrid concrete (series II) mixes. The natural fine aggregate was replaced by rubber ash (by volume of 5%, 10%, 15% and 20%) in series I; whereas in series II, the amount of rubber ash was kept constant at 10% and rubber fiber was introduced as replacement of fine aggregate (by volume of 5%, 10%, 15%, 20% and 25%). The concrete mixes were evaluated for compressive strength, flexural strength, resistance to impact loading, fatigue loading, water penetration and shrinkage strain was evaluated. It was observed that inclusion of rubber ash resulted in the improvement of impact resistance of concrete. The results also show that up to 10% rubber ash and rubber fibers can be utilized as fine aggregate to develop feasible and durable rubberized concrete pavements, crash barriers and paver blocks.

  相似文献   

20.
There is a need to promote high-value added utilization of recycled aggregates, considering the aspect of effective use. It should be noted, however, that recycled fine aggregates are generally low in quality due to the presence of cement paste attached to the aggregate surface. Based on this, there have been studies, which aimed to improve the quality of recycled aggregates using mechanical abrasion methods of removing the cement paste based on the principles of crushing, grinding and abrasion and beneficiation method using heat or acid. Accordingly, this study was performed as part of the research to improve the quality of recycled fine aggregates with the aim to effectively remove cement paste using steel ball as mechanical method and acid as chemical method. The results of the experiment showed that the oven-dry density and absorption ratio obtained after the abrasion process using sulfuric acid solution were 2.51 g/cm3 and 2.3%, respectively. This evidenced the quality improvement of the recycled aggregates as they satisfied the quality criteria of over 2.2 g/cm3 and under 5%, respectively, for Class I concrete proposed in the quality standards for recycled aggregates as well as natural sand proposed in Korea Standard criteria of over 2.5 g/cm3 and under 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号