首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Healthcare waste management is a serious public health concern. In developing countries, compared to developed nations, the management of infectious wastes has not received sufficient attention. Recently, worldwide awareness has grown of the need to impose stricter controls on the handling and disposal of wastes generated by healthcare facilities. This exploratory study attempted in seven selected hospitals to explain the situation of healthcare waste management, with a focus on handling practices, occupational safety, and the implementation status of waste management policy, together with other pertinent policy issues. It was noted that the current system of healthcare waste management was underdeveloped and was in dire need of immediate attention and improvement, especially in Mongolia and Pakistan; the medical waste management practices were better in the hospitals studied in Thailand. This study underscores the importance for improvement of medical waste management of a national regulatory framework, a sound internal management system, and programs to train and ensure the safety of related personnel, as well as programs to estimate quantities of waste generated and to evaluate appropriate techniques of disposal. Once a healthcare waste management plan has been prepared, a regular program of inspection and review can be undertaken within the healthcare institution. A good inspection program can also expose problems and new issues in managing healthcare wastes.  相似文献   

2.
Medical wastes management in the south of Brazil   总被引:2,自引:0,他引:2  
In developing countries, solid wastes have not received sufficient attention. In many countries, hazardous and medical wastes are still handled and disposed together with domestic wastes, thus creating a great health risk to municipal workers, the public and the environment. Medical waste management has been evaluated at the Vacacai river basin in the State of Rio Grande do Sul, Brazil. A total of 91 healthcare facilities, including hospitals (21), health centers (48) and clinical laboratories (22) were surveyed to provide information about the management, segregation, generation, storage and disposal of medical wastes. The results about management aspects indicate that practices in most healthcare facilities do not comply with the principles stated in Brazilian legislation. All facilities demonstrated a priority on segregation of infectious-biological wastes. Average generation rates of total and infectious-biological wastes in the hospitals were estimated to be 3.245 and 0.570 kg/bed-day, respectively.  相似文献   

3.
The shortcomings in the management practices of hospital solid waste in Limpopo Province of South Africa were studied by looking at two hospitals as case studies. Apart from field surveys, the generated hospital waste was weighed to compute the generation rates and was followed through various management practices to the final disposal. The findings revealed a major policy implementation gap between the national government and the hospitals. While modern practices such as landfill and incineration are used, their daily operations were not carried according to minimum standards. Incinerator ash is openly dumped and wastes are burned on landfills instead of being covered with soil. The incinerators used are also not environmentally friendly as they use old technology. The findings further revealed that there is no proper separation of wastes according to their classification as demanded by the national government. The mean percentage composition of the waste was found in the following decreasing order: general waste (60.74%)>medical waste (30.32%)>sharps (8.94%). The mean generation rates were found to be 0.60kg per patient per day.  相似文献   

4.
The management of biomedical waste is a crucial issue in health and environmental management. Rules in India were promulgated in 1998, originally with a deadline of December 2000 and extended to December 2002; however, the actual situation remains far from satisfactory. A study conducted in 2001 by CEE, New Delhi; indicated an implementation deficit. To gauge the present situation, a survey was undertaken during 2005-2006. A systematic analysis of current biomedical waste management practices in smaller nursing homes and hospitals in Delhi was carried out. A total of 53 nursing homes, with bed strengths ranging from 20 to over 200, were included. The survey results show that there is a marked improvement in the segregation practices of biomedical waste in small private hospitals and nursing homes. The majority of nursing homes and hospitals were found to be using a service provider for the collection, management, and disposal of healthcare wastes. Data was collected through a questionnaire and field visits. This paper discusses the relevant data indicative of current practices of healthcare waste management in the nursing homes and small healthcare facilities in Delhi.  相似文献   

5.
This study includes a survey of the procedures available, techniques, and methods of handling and disposing of medical waste at medium (between 100 and 200 beds) to large (over 200 beds) size healthcare facilities located in Irbid city (a major city in the northern part of Jordan). A total of 14 healthcare facilities, including four hospitals and 10 clinical laboratories, serving a total population of about 1.5 million, were surveyed during the course of this research. This study took into consideration both the quantity and quality of the generated wastes to determine generation rates and physical properties. Results of the survey showed that healthcare facilities in Irbid city have less appropriate practices when it comes to the handling, storage, and disposal of wastes generated in comparison to the developed world. There are no defined methods for handling and disposal of these wastes, starting from the personnel responsible for collection through those who transport the wastes to the disposal site. Moreover, there are no specific regulations or guidelines for segregation or classification of these wastes. This means that wastes are mixed, for example, wastes coming from the kitchen with those generated by different departments. Also, more importantly, none of the sites surveyed could provide estimated quantities of waste generated by each department, based upon the known variables within the departments. Average generation rates of total medical wastes in the hospitals were estimated to be 6.10 kg/patient/day (3.49 kg/bed/day), 5.62 kg/patient/day (3.14 kg/bed/day), and 4.02 kg/patient/day (1.88 kg/bed/day) for public, maternity, and private hospitals, respectively. For medical laboratories, rates were found to be in the range of 0.053-0.065 kg/test-day for governmental laboratories, and 0.034-0.102 kg/test-day for private laboratories. Although, based on the type of waste, domestic or general waste makes up a large proportion of the waste volume, so that if such waste is not mixed with patient derived waste, it can be easily handled. However, based on infections, it is important for healthcare staff to take precautions in handling sharps and pathological wastes, which comprises only about 26% of the total infectious wastes. Statistical analysis was conducted to develop mathematical models to aid in the prediction of waste quantities generated by the hospitals studied, or similar sites in the city that are not included in this study. In these models, the number of patients, number of beds, and hospital type were determined to be significant factors on waste generation. Such models provide decision makers with tools to better manage their medical waste, given the dynamic conditions of their healthcare facilities.  相似文献   

6.
Inconsistencies are present in the management options for healthcare wastes in Mongolia. One of the first critical steps in the process of developing a reliable waste management plan requires the performance of a waste characterization analysis. The objectives of this study were an assessment of the current situation of healthcare waste management (HCWM) and characterization of healthcare wastes generated in Ulaanbaatar. A total about 2.65 tonnes of healthcare wastes are produced each day in Ulaanbaatar (0.78 tons of medical wastes and 1.87 tons of general wastes). The medical waste generation rate per kg/patient-day in the inpatient services of public healthcare facilities was 1.4-3.0 times higher than in the outpatient services (P<0.01). The waste generation rate in the healthcare facilities of Ulaanbaatar was lower than in some other countries; however, the percentage of medical wastes in the total waste stream was comparatively high, ranging from 12.5% to 69.3%, which indicated poor waste handling practices. Despite the efforts for the management of wastes, the current system of healthcare waste management in Ulaanbaatar city of Mongolia is under development and is in dire need of immediate attention and improvement. It is essential to develop a national policy and implement a comprehensive action plan for HCWM providing environmentally sound technological measures to improve HCWM in Mongolia.  相似文献   

7.
8.
Inadequate management of biomedical waste can be associated with risks to healthcare workers, patients, communities and their environment. This study was conducted to assess the handling and treatment of biomedical waste in different healthcare settings in Egypt. Five hospitals and ten primary healthcare settings were surveyed using a modified survey questionnaire for waste management. This questionnaire was obtained from the World Health Organization (WHO), with the aim of assessing the processing systems for biomedical waste disposal. Researchers found that biomedical waste is inadequately processed in hospitals and primary healthcare settings due to the absence of written policies and protocols. Accordingly, healthcare staff, patients, the community and the environment may be negatively affected by exposure to the hazards of biomedical waste. The development of waste management policies, plans, and protocols are strongly recommended, in addition to establishing training programs on proper waste management for all healthcare workers.  相似文献   

9.
Quantification and characterization of medical waste generated in healthcare facilities (HCFs) in a developing African nation has been conducted to provide insights into existing waste collection and disposal approaches, so as to provide sustainable avenues for institutional policy improvement. The study, in Ibadan city, Nigeria, entailed a representative classification of nearly 400 healthcare facilities, from 11 local government areas (LGA) of Ibadan, into tertiary, secondary, primary, and diagnostic HCFs, of which, 52 HCFs were strategically selected. Primary data sources included field measurements, waste sampling and analysis and a questionnaire, while secondary information sources included public and private records from hospitals and government ministries. Results indicate secondary HCFs generate the greatest amounts of medical waste (mean of 10,238 kg/day per facility) followed by tertiary, primary and diagnostic HCFs, respectively. Characterised waste revealed that only approximately 3% was deemed infectious and highlights opportunities for composting, reuse and recycling. Furthermore, the management practices in most facilities expose patients, staff, waste handlers and the populace to unnecessary health risks. This study proffers recommendations to include (i) a need for sustained cooperation among all key actors (government, hospitals and waste managers) in implementing a safe and reliable medical waste management strategy, not only in legislation and policy formation but also particularly in its monitoring and enforcement and (ii) an obligation for each HCF to ensure a safe and hygienic system of medical waste handling, segregation, collection, storage, transportation, treatment and disposal, with minimal risk to handlers, public health and the environment.  相似文献   

10.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   

11.
BackgroundHealthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75–90% of these wastes are classified as household waste posing no potential risk, 10–25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran.Materials and methodsNamazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period.ResultsBefore the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste.ConclusionA structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings.  相似文献   

12.
One of the requirements for development of human societies is the establishment of new healthcare centers. A variety of wastes are generated in healthcare centers depending on the type of activities. This study was conducted to identify, measure and manage different types of hospital wastes as a case study in a hospital located in southern Iran. For this purpose, a questionnaire was initially designed and distributed among the relevant experts to survey the current trend of waste management in the hospital in terms of waste collection, storage and disposal. Afterwards, the hospital waste was sampled during two seasons of fall and winter. The samples were weighted for seven consecutive days in the middle of each season. Approximately, 10 % of the total waste bags per day collected round the clock were selected for further analysis. The obtained results indicated that infectious-hazardous and pseudo-household wastes were, respectively, about 3.79 kg/day/bed, 1.36 kg/day/bed and 2.43 kg/day/bed of the total generated waste in the hospital. As the research findings suggest, proper separation of infectious and pseudo-household wastes at the source would be an essential step towards mitigating environmental and health risks and minimizing the cost of the hospital waste management.  相似文献   

13.
14.
In Helsinki, Finland, new guidelines have been adopted for the management of wastes from healthcare facilities. The purpose has been to rationalize waste management, reducing the amount of waste needing special treatment and lowering costs, while at the same time maintaining occupational safety and preventing environmental hazards. The changes are mainly due to the new definition of infectious waste, based on practical assessment of the possibility of spread of infection via the wastes. As a result, it has been possible to omit one chain of waste handling which has led to simpler practices and economic benefits. Sanitary landfill has been accepted for disposal of clinical waste, except for the biological waste to be incinerated for ethical reasons and infectious waste contaminated by class 4 viruses,Yersinia pestisorBacillus anthracis. Diseases caused by these micro-organisms are not a practical problem in Finland.  相似文献   

15.
Medical waste production at hospitals and associated factors   总被引:2,自引:0,他引:2  
This study was conducted to evaluate the quantities of medical waste generated and the factors associated with the generation rate at medical establishments in Taiwan. Data on medical waste generation at 150 health care establishments were collected for analysis in 2003. General medical waste and infectious waste production at these establishments were examined statistically with the potential associated factors. These factors included the types of hospital and clinic, reimbursement payment by National Health Insurance, total number of beds, bed occupancy, number of infectious disease beds and outpatients per day. The average waste generation rates ranged from 2.41 to 3.26kg/bed/day for general medical wastes, and 0.19-0.88kg/bed/day for infectious wastes. The total average quantity of infectious wastes generated was the highest from medical centers, or 3.8 times higher than that from regional hospitals (267.8 vs. 70.3Tons/yr). The multivariate regression analysis was able to explain 92% of infectious wastes and 64% of general medical wastes, with the amount of insurance reimbursement and number of beds as significant prediction factors. This study suggests that large hospitals are the major source of medical waste in Taiwan. The fractions of medical waste treated as infectious at all levels of healthcare establishments are much greater than that recommended by the USCDC guidelines.  相似文献   

16.
Mad cow disease and related transmissible spongiform encephalopathy diseases (TSEs) in both animals and humans have received worldwide attention. Interestingly, the issue of managing biohazardous wastes, for which TSE agents are an issue, has received little attention by environmental professionals. The burial of wastes associated with mad cow and related diseases may eventually lead to unusual challenges for remediation professionals. The core challenge is that medical researchers have confirmed the incredible difficulty in destroying TSE infectious agents or pathogens, generally called prions. Risk reduction is certainly possible with treatment technologies, but complete elimination of risk by reliable and verifiable destruction of all TSE agents is probably infeasible. Proving the efficacy of any waste treatment method for TSE-infected wastes is not practical because there is no commercially available test for TSE pathogens (although one is expected soon) and in only a few cases is there a reasonable surrogate approach. These circumstances have contributed to some biohazardous waste managers discounting the TSE issue. The goal of this article is to more thoroughly analyze available information and various risks to identify useful implications for alternative waste management technologies. A number of prudent actions can be taken in recognition of the TSE problem, including more careful assessment of treatment technologies, avoiding any reuse or recycling of waste treatment residues, using air pollution control systems to avoid releases of materials possibly containing infectious agents, and using wastewater pretreatment prior to sewer disposal.  相似文献   

17.
The main objective of this paper was to analyse the present status of medical waste management in the Trachea region of Turkey and subsequently to draw up a policy regarded with generation, collection, on-site handling, storage, processing, recycling, transportation and safe disposal of medical wastes. This paper also presents the results of study about awareness on how to handle expired drugs. Initially all health-care establishments in Tekirda?, Edirne and Kyrklareli provinces in Trachea region were identified and the amounts of hospital wastes generated by each of them were determined. Current medical waste-management practices, including storage, collection, transportation and disposal, in surveyed establishments were identified. Finally, according to results, remedial measurements for medical waste management in these establishments were suggested. Unfortunately, medical wastes are not given proper attention and these wastes are disposed of together with municipal and industrial solid wastes. The current disposal method is both a public health and environmental hazard. When landfill sites are visited, many scavengers can be seen sorting for recyclable materials, a practice which is dangerous for the scavengers. In addition, it was found that some staff in health-care establishments are unaware of the hazard of medical wastes. It is concluded that a new management system, which consists of segregation, material substitution, minimization, sanitary landfilling and alternative medical waste treatment methods should be carried out. For the best appropriate medical waste management system, health-care establishment employers, managers and especially the members of house- keeping divisions should be involved in medical waste management practice.  相似文献   

18.
Biomedical waste has become a serious health hazard in many countries, including India. Careless and indiscriminate disposal of this waste by healthcare establishments and research institutions can contribute to the spread of serious diseases such as hepatitis and AIDS (HIV) among those who handle it and also among the general public. The present study pertains to the biomedical waste management practices at Balrampur Hospital, a premier healthcare establishment in Lucknow, in North India. The study shows that infectious and non-infectious wastes are dumped together within the hospital premises, resulting in a mixing of the two, which are then disposed of with municipal waste at the dumping sites in the city. All types of wastes are collected in common bins placed outside the patients wards. For disposal of this waste the hospital depends on the generosity of the Lucknow Municipal Corporation, whose employees generally collect it every 2 or 3 days. The hospital does not have any treatment facility for infectious waste. The laboratory waste materials, which are disposed of directly into the municipal sewer without proper disinfection of pathogens, ultimately reach the Gomti River. All disposable plastic items are segregated by the rag pickers from the hospital as well as municipal bins and dumps. The waste is deposited either inside the hospital grounds, or outside in the community bin for further transportation and disposal along with municipal solid waste. The open dumping of the waste makes it freely accessible to rag pickers who become exposed to serious health hazards due to injuries from sharps, needles and other types of material used when giving injections. The results of the study demonstrate the need for strict enforcement of legal provisions and a better environmental management system for the disposal of biomedical waste in the Balrampur Hospital, as well as other healthcare establishments in Lucknow.  相似文献   

19.
A comprehensive understanding of the quantities and characteristics of the material that needs to be managed is one of the most basic steps in the development of a plan for solid waste management. In this case, the material under consideration is the solid waste generated in healthcare facilities, also known as healthcare waste. Unfortunately, limited reliable information is available in the open literature on the quantities and characteristics of the various types of wastes that are generated in healthcare facilities. Thus, sound management of these wastes, particularly in developing countries, often is problematic. This article provides information on the quantities and properties of healthcare wastes in various types of facilities located in developing countries, as well as in some industrialized countries. Most of the information has been obtained from the open literature, although some information has been collected by the authors and from reports available to the authors. Only data collected within approximately the last 15 years and using prescribed methodologies are presented. The range of hospital waste generation (both infectious and mixed solid waste fractions) varies from 0.016 to 3.23kg/bed-day. The relatively wide variation is due to the fact that some of the facilities surveyed in Ulaanbaatar include out-patient services and district health clinics; these facilities essentially provide very basic services and thus the quantities of waste generated are relatively small. On the other hand, the reported amount of infectious (clinical, yellow bag) waste varied from 0.01 to 0.65kg/bed-day. The characteristics of the components of healthcare wastes, such as the bulk density and the calorific value, have substantial variability. This literature review and the associated attempt at a comparative analysis point to the need for worldwide consensus on the terms and characteristics that describe wastes from healthcare facilities. Such a consensus would greatly facilitate comparative analyses among different facilities, studies and countries.  相似文献   

20.
Hospital waste is considered dangerous because it may possess pathogenic agents and can cause undesirable effects on human health and the environment. In Iran, neither rules have been compiled nor does exact information exist regarding hospital waste management. The survey presented in this article was carried out in all 15 private hospitals of Fars province (Iran) from the total numbers of 50 governmental and private hospitals located in this province, in order to determine the amount of different kinds of waste produced and the present situation of waste management. The results indicated that the waste generation rate is 4.45 kg/bed/day, which includes 1830 kg (71.44%) of domestic waste, 712 kg (27.8%) of infectious waste, and 19.6 kg (0.76%) of sharps. Segregation of the different types of waste is not carried out perfectly. Two (13.3%) of the hospitals use containers without lids for on-site transport of wastes. Nine (60%) of the hospitals are equipped with an incinerator and six of them (40%) have operational problems with the incinerators. In all hospitals municipal workers transport waste outside the hospital premises daily or at the most on alternative days. In the hospitals under study, there aren't any training courses about hospital waste management and the hazards associated with them. The training courses that are provided are either ineffective or unsuitable. Performing extensive studies all over the country, compiling and enacting rules, establishing standards and providing effective personnel training are the main challenges for the concerned authorities and specialists in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号