首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.  相似文献   

2.
Coal bottom ash (CBA) and fly ash (FA) are by-products of thermal power plants. Granulated blast-furnace slag (GBFS) is developed during iron production in iron and steel plants. This research was conducted to evaluate the compressive strength property and some durability characteristics of concrete incorporating FA, CBA, and GBFS. FA is used as an effective partial cement replacement; CBA and GBFS are used as partial replacement for fine aggregate without grinding. Water absorption capacity, unit weight and compressive strengths in 7, 28, and 90-day ages were assessed experimentally. For these experiments, concrete specimens were produced in the laboratory in appropriate shapes. The samples are divided into two main categories: M1, which incorporated CBA and GBFS; and M2, which incorporated FA, CBA, and GBFS. Remarkable decreases are observed in compressive strength and water absorption capacity of the concrete; bulk density of the concrete is also decreased. It can be concluded that if the content of CBA and GBFS is limited to a reasonable amount, the small decreases in strength can be accepted for low strength concrete works.  相似文献   

3.
Enormous amounts of oyster shell waste have been illegally disposed of at oyster farm sites along the southern coast of Korea. In this study to evaluate the possibility of recycling this waste for use as a construction material, the mechanical characteristics of pulverized oyster shell were investigated in terms of its potential utilization as a substitute for the aggregates used in mortar. The unconfined compressive strengths of various soil mortar specimens, with varying blending ratios of cement, water and oyster shell, were evaluated by performing unconfined compression tests, and the results were compared with the strengths of normal cement mortar made with sand. In addition, the effect of organic chemicals on the hardening of concrete was evaluated by preparing ethyl-benzene-mixed mortar specimens. The long-term strength improvement resulting from the addition of fly ash was also examined by performing unconfined compression tests on specimens with fly-ash content. There was no significant reduction in the compressive strength of the mortars containing small oyster shell particles instead of sand. From these test data, the possible application of oyster shells in construction materials could be verified, and the change in the strength parameters according to the presence of organic compounds was also evaluated.  相似文献   

4.
The possibility of using incinerator bottom ash as a substitute for natural aggregates was investigated. Rough, porous surface of bottom ash, which diminishes the strength of solidified products, was improved by colloidal silica solution. As a result, a significant increase of mechanical strength was accomplished by a slight amount of silica (<1 wt% to total). Moreover, pozzolanic reaction was induced in initial cement hydration due to the nano-particle size of about 20 nm in colloidal silica solution. Cylindrical specimens and bricks were prepared from bottom ash added to a colloidal silica (SiO2) solution and cement, and then their compressive strengths were evaluated. Cylindrical specimens showed an increase of approximately 60% in compressive strength when colloidal solution containing 4 wt% silica particles was sprayed onto the bottom ash. The strength of bricks containing colloidal silica was in excess of 20 MPa, which meets the requirement of construction materials. Results of leaching tests based on Toxicity Characteristic Leaching Procedure (TCLP) proved that the solidified bottom ash possessed good chemical stability.  相似文献   

5.
Recycling MSWI bottom and fly ash as raw materials for Portland cement   总被引:5,自引:0,他引:5  
Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.  相似文献   

6.
In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative.  相似文献   

7.
The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production.Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes.Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m3 of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.  相似文献   

8.
In the combustion process of municipal solid waste (MSW), bottom ash (BA) represents the major portion of the solid residue. Since BA is composed of oxides, especially SiO(2) and CaO, the feasibility of its application in concrete as a substitute for cement was tested. It was found that at the age of 28 days, the flexural and compressive strengths of the binder linearly decrease at the rate of 0.03 and 0.02 MPa per wt% of BA in the binder, respectively. According to the results it may be recommended to replace up to 15 wt% of cement by BA and to use such binder where a low strength of concrete elements is required. Furthermore, the aggregate used for low strength concrete need not be of a very good quality. Therefore, gravel aggregate was partially replaced by recycled aggregate (RA). Consistency measured by slump was significantly reduced (>50%) when BA or/and RA were introduced into the mixture. However, concrete density and compressive strength were not affected and were approximately 2300 kg/m(3) and approximately 40 MPa, respectively.  相似文献   

9.
Manufacture of artificial aggregate using MSWI bottom ash   总被引:1,自引:0,他引:1  
This paper reports the results of an investigation on material recovery by stabilization/solidification of bottom ash coming from a municipal solid waste incineration plant. Stabilization/solidification was carried out to produce artificial aggregate in a rotary plate granulator by adding hydraulic binders based on cement, lime and coal fly ash. Different mixes were tested in which the bottom ash content ranged between 60% and 90%. To avoid undesirable swelling in hardened products, the ash was previously milled and then granulated at room temperature. The granules were tested to assess their suitability to be used as artificial aggregate through the measurement of the following properties: density, water absorption capacity, compressive strength and heavy metals release upon leaching. It was demonstrated that the granules can be classified as lightweight aggregate with mechanical strength strongly dependent on the type of binder. Concrete mixes were prepared with the granulated artificial aggregate and tested for in-service performance, proving to be suitable for the manufacture of standard concrete blocks in all the cases investigated.  相似文献   

10.
Incineration of municipal solid wastes (MSWs) produces by-products which can be broadly classified as bottom and fly ashes. Since MSW incineration started, possibilities other than landfilling the incineration residues have been sought; most initiatives in this sense tend to use these residues as aggregate substitute in pavements and other road construction elements. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. The study includes not only the specific aspects regarding its role as pavement element, but also the assessment of the environmental effects. Therefore, together with the determination of physical (moisture content, apparent and bulk densities, crystallinity, etc.) and engineering properties (particle size distribution, abrasion and impact resistance, etc.), full chemical characterization of the bottom ash and the study of leaching as a function of aging time have been undertaken. The results obtained indicate that the metal content of both the raw bottom ash and its leachates fulfill the environmental regulations provided that the bottom ash is stored for at least one month. Engineering properties of the bottom ash are close to those of natural aggregates and, thus, road-construction use of these residues seems to be feasible.  相似文献   

11.
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste.In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10 mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5 mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 °C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.  相似文献   

12.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

13.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

14.
Synthetic aggregates from combustion ashes using an innovative rotary kiln   总被引:1,自引:0,他引:1  
This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.  相似文献   

15.
The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.  相似文献   

16.
Waste incineration is still an essential technology in the concept of integrated waste management. Most of the combustion residues are incinerator bottom ash. It has been discovered that incinerator bottom ash from the incineration of separated waste in the primary chamber of the modular two-stage incinerator mainly consists of metal oxides, especially SiO2 and CaO, in proportions that are quite similar to those in cement and so the feasibility of its application as a substitute for cement in concrete was investigated. It was found that after 28 days, the flexural and compressive strengths of the binder using bottom ash were practically comparable with those of a pure cement mixture. The results show that it is reasonable to use a binder containing incinerator bottom ash for applications in which an early-stage lower strength of concrete element is acceptable.  相似文献   

17.
A range of artificial aggregates has been developed from incinerated sewage sludge ash. The ash is either pelletized or slabbed and subsequently fired until it sinters and expands to form lightweight products which are later graded for use as aggregates in concrete. From the standard tests conducted on size grading, bulk density, absorption and fracture strength, it appears that both the pellets and slabs are potentially suitable as lightweight aggregates in concrete. Preliminary studies on concrete incorporating these aggregates support this hypothesis. No studies of potential containment release at high temperature was made during these studies.  相似文献   

18.
Reuse of thermosetting plastic waste for lightweight concrete   总被引:1,自引:0,他引:1  
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm(2) and 1395kg/m(3), respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.  相似文献   

19.
Currently, wet bottom ash is not sufficiently utilized due to its content of unburned coal, chloride and moisture. In contrast, bottom ash discharged from the recently introduced dry process spends a longer time on the clinker conveyer in the lower part of the boiler and consequently contains a significantly smaller amount of unburned coal. Consequently, it has high potential for use as a lightweight aggregate for construction material because of properties such as high porosity, low unburned coal content, non-chloride, and non-moisture. However, it is not frequently used for construction because the ash particle has a flat and thin shape, coarse surface and unfavorable structural strength. Against this backdrop, this study has conducted a range of experiments to identify the shapes, structure, density, absorption, percentage of floating particles, unit volume weight, solid volume, characteristics of air bubbles and micro pores, crushing strength of bottom ash, and the following results were observed. Though the dry bottom ash has sharp and angular edges, its flat and thin shapes lead to vulnerable structures. Dry bottom ash of the size of 0.6 mm or larger has 50–60 % of the total pore rate and 30–50 % of the closed pore rate. Considering these qualities, by removing the relatively fragile surface parts and making the particles more globular, dry bottom ash can be used as a lightweight aggregate for construction field having outstanding performance in terms of light weight and insulation.  相似文献   

20.
This study has examined the mechanical properties of lightweight aggregate concrete with a density of 1800 kg/m3. The effects of the following parameters on the concrete properties have been analyzed: the pre-wetting time of the lightweight aggregate and the percentage of pulverized fly ash used as cementitious replacement material. The strength of the lightweight aggregate was found to be the primary factor controlling the strength of high-strength lightweight concrete. An increase in the cementitious content from 420 to 450 kg/m3 does not significantly increase the strength of lightweight aggregate concrete. The relationship between the flexural and compressive strength at 28 days can be represented by the equation fr=0.69/fck. The elastic modulus was found to be much lower than that of normal weight concrete, ranging from 15.0 to 20.3 GPa. The addition of PFA increases the slump and density of lightweight aggregate concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号